/* * © Copyright 2014 – Urheberrechtshinweis * Alle Rechte vorbehalten / All Rights Reserved * * Programmcode ist urheberrechtlich geschuetzt. * Das Urheberrecht liegt, soweit nicht ausdruecklich anders gekennzeichnet, bei Frank Ebner. * Keine Verwendung ohne explizite Genehmigung. * (vgl. § 106 ff UrhG / § 97 UrhG) */ #ifndef CIRCLE2_H #define CIRCLE2_H #include #include "Point2.h" #include "Ray2.h" #include "Line2.h" #include "../Assertions.h" //#include //#include //#include //#include struct Circle2 { Point2 center; float radius; public: /** empty ctor */ Circle2() : center(), radius(0) {;} /** ctor */ Circle2(const Point2 center, const float radius) : center(center), radius(radius) {;} /** does this circle contain the given point? */ bool contains(const Point2 p) const { return center.getDistance(p) <= radius; } /** does this circle contain the given point? */ bool containsAll(const std::vector& pts) const { for (const Point2& p : pts) { if (!contains(p)) {return false;} } return true; } /** get a point on the circle for the given radians */ Point2 getPointAt(const float rad) const { return center + Point2(std::cos(rad), std::sin(rad)) * radius; } /** does this circle contain the given circle? */ bool contains(const Circle2 c) const { return (center.getDistance(c.center)+c.radius) <= radius; } /** does this circle intersect with the given ray? */ bool intersects(const Ray2 ray) const { // https://math.stackexchange.com/questions/311921/get-location-of-vector-circle-intersection const float a = ray.dir.x*ray.dir.x + ray.dir.y*ray.dir.y; const float b = 2 * ray.dir.x * (ray.start.x-center.x) + 2 * ray.dir.y * (ray.start.y - center.y); const float c = (ray.start.x-center.x) * (ray.start.x-center.x) + (ray.start.y - center.y)*(ray.start.y - center.y) - radius*radius; const float discr = b*b - 4*a*c; return discr >= 0; } /** does this circle intersect with the given ray? */ bool intersects(const Line2 line) const { // https://math.stackexchange.com/questions/311921/get-location-of-vector-circle-intersection Point2 dir = line.p2 - line.p1; Point2 start = line.p1; const float a = dir.x*dir.x + dir.y*dir.y; const float b = 2 * dir.x * (start.x-center.x) + 2 * dir.y * (start.y - center.y); const float c = (start.x-center.x) * (start.x-center.x) + (start.y - center.y)*(start.y - center.y) - radius*radius; const float discr = b*b - 4*a*c; if (discr < 0) {return false;} const float t = (2*c) / (-b + std::sqrt(discr)); return (t <= 1) && (t >= 0); } /** configure this sphere to contain the given point-set */ void adjustToPointSet(const std::vector& lst) { //adjustToPointSetAPX(lst); adjustToPointSetExact(lst); // validate for (const Point2& p : lst) { Assert::isTrue(this->contains(p), "calculated circle seems incorrect"); } } /** combine two circles into a new one containing both */ static Circle2 join(const Circle2& a, const Circle2& b) { // if one already contains the other, just return it as-is if (a.contains(b)) {return a;} if (b.contains(a)) {return b;} // create both maximum ends const Point2 out1 = a.center + (a.center-b.center).normalized() * a.radius; const Point2 out2 = b.center + (b.center-a.center).normalized() * b.radius; // center is within both ends, so is the radius Point2 newCen = (out1 + out2) / 2; float newRad = out1.getDistance(out2) / 2 * 1.0001; // slightly larger to prevent rounding issues Circle2 res(newCen, newRad); // check Assert::isTrue(res.contains(a), "sphere joining error. base-spheres are not contained."); Assert::isTrue(res.contains(b), "sphere joining error. base-spheres are not contained."); return res; } float getArea() const { return M_PI * (radius*radius); } private: /* void show(std::vector pts, const Point2 P, const Point2 Q, const Point2 R = Point2(NAN, NAN)) { static K::Gnuplot gp; K::GnuplotPlot plot; K::GnuplotPlotElementPoints gPoints; plot.add(&gPoints); gPoints.setColor(K::GnuplotColor::fromHexStr("#0000ff")); gPoints.setPointSize(1); K::GnuplotPlotElementLines gLines; plot.add(&gLines); for (const Point2 p : pts) { K::GnuplotPoint2 p2(p.x, p.y); gPoints.add(p2); } K::GnuplotPoint2 gP(P.x, P.y); K::GnuplotPoint2 gQ(Q.x, Q.y); gLines.addSegment(gP, gQ); K::GnuplotPoint2 gR(R.x, R.y); //gLines.addSegment(gP, gR); gLines.addSegment(gQ, gR); for (float f = 0; f < M_PI*2; f += 0.1) { Point2 p = center + Point2(std::cos(f), std::sin(f)) * radius; K::GnuplotPoint2 gp (p.x, p.y); gLines.add(gp); } gp << "set size ratio -1\n"; gp.draw(plot); gp.flush(); int i = 0; (void) i; } */ // Graphic Gems 2 - Jon Rokne void adjustToPointSetExact(const std::vector& _lst) { if (_lst.size() == 2) { this->center = (_lst[0] + _lst[1]) / 2; this->radius = _lst[0].getDistance(_lst[1]) / 2 * 1.0001f; return; } std::vector lst = _lst; // find point P having min(p.y) // NOTE: seems like the original work uses another coordinate system. so we search for max(p.y) instead! auto compMinY = [] (const Point2 p1, const Point2 p2) {return p1.y < p2.y;}; auto it1 = std::max_element(lst.begin(), lst.end(), compMinY); Point2 P = *it1; lst.erase(it1); // find a point Q such that the angle of the line segment // PQ with the x axis is minimal auto compMinAngleX = [&] (const Point2 p1, const Point2 p2) { const Point2 PQ1 = p1 - P; const Point2 PQ2 = p2 - P; const float angle1 = dot(PQ1.normalized(), Point2(0,1)); const float angle2 = dot(PQ2.normalized(), Point2(0,1)); return std::acos(angle1) < std::acos(angle2); }; auto it2 = std::min_element(lst.begin(), lst.end(), compMinAngleX); Point2 Q = *it2; lst.erase(it2); // get the angle abc which is the angle at "b" auto angle = [] (const Point2 a, const Point2 b, const Point2 c) { const Point2 ba = a - b; const Point2 bc = c - b; return std::acos(dot(ba.normalized(), bc.normalized())); }; // TODO: how many loops? for (size_t xx = 0; xx < lst.size()*10; ++xx) { auto compMinAnglePRQ = [P,Q,angle] (const Point2 p1, const Point2 p2) { return std::abs(angle(P,p1,Q)) < std::abs(angle(P,p2,Q)); }; auto it3 = std::min_element(lst.begin(), lst.end(), compMinAnglePRQ); Point2 R = *it3; lst.erase(it3); const float anglePRQ = angle(P,R,Q); const float angleRPQ = angle(R,P,Q); const float anglePQR = angle(P,Q,R); //check for case 1 (angle PRQ is obtuse), the circle is determined //by two points, P and Q. radius = |(P-Q)/2|, center = (P+Q)/2 if (anglePRQ > M_PI/2) { this->radius = P.getDistance(Q) / 2 * 1.001f; this->center = (P+Q)/2; //if (!containsAll(_lst)) {show(_lst, P, Q, R);} return; } if (angleRPQ > M_PI/2) { lst.push_back(P); P = R; continue; } if (anglePQR > M_PI/2) { lst.push_back(Q); Q = R; continue; } const Point2 mPQ = (P+Q)/2; const Point2 mQR = (Q+R)/2; const float numer = -(-mPQ.y * R.y + mPQ.y * Q.y + mQR.y * R.y - mQR.y * Q.y - mPQ.x * R.x + mPQ.x * Q.x + mQR.x * R.x - mQR.x * Q.x); const float denom = (-Q.x * R.y + P.x * R.y - P.x * Q.y + Q.y * R.x - P.y * R.x + P.y * Q.x); const float t = numer / denom; const float cx = -t * (Q.y - P.y) + mPQ.x; const float cy = t * (Q.x - P.x) + mPQ.y; this->center = Point2(cx, cy); this->radius = this->center.getDistance(P) * 1.001f; //if (!containsAll(_lst)) {show(_lst, P, Q, R);} return; } throw Exception("should not happen"); } /* void adjustToPointSetRefine(const std::vector& lst) { float bestArea = 99999999; for (size_t i = 0; i < lst.size(); ++i) { for (size_t j = 0; j < lst.size(); ++j) { if (i == j) {continue;} const Point2 center = (lst[i] + lst[j]) / 3; const float radius = lst[i].getDistance(lst[j]); const Circle2 test(center, radius); if (test.containsAll(lst)) { if (test.getArea() < bestArea) { bestArea = test.getArea(); this->radius = test.radius; this->center = test.center; } } } } } */ void adjustToPointSetAPX(const std::vector& lst) { // NOT OPTIMAL but fast // calculate the point set's center Point2 sum(0,0); for (const Point2 p : lst) {sum += p;} const Point2 center = sum / lst.size(); // calculate the sphere's radius (maximum distance from center float radius = 0; for (const Point2 p : lst) { const float dist = center.getDistance(p); if (dist > radius) {radius = dist;} } this->radius = radius; this->center = center; } }; #endif // CIRCLE2_H