added kullback leibler for gaussian cases
This commit is contained in:
214
tests/math/divergence/TestKullbackLeibler.cpp
Normal file
214
tests/math/divergence/TestKullbackLeibler.cpp
Normal file
@@ -0,0 +1,214 @@
|
||||
#ifdef WITH_TESTS
|
||||
|
||||
#include "../../Tests.h"
|
||||
#include "../../../math/divergence/KullbackLeibler.h"
|
||||
#include "../../../math/Distributions.h"
|
||||
|
||||
#include <random>
|
||||
|
||||
|
||||
TEST(KullbackLeibler, univariateGaussEQ) {
|
||||
//if the distributions are equal, kld is 0
|
||||
Distribution::Normal<float> norm1(0,1);
|
||||
Distribution::Normal<float> norm2(0,1);
|
||||
|
||||
ASSERT_EQ(0.0f, Divergence::KullbackLeibler<float>::getUnivariateGauss(norm1, norm2));
|
||||
ASSERT_EQ(0.0f, Divergence::KullbackLeibler<float>::getUnivariateGaussSymmetric(norm1, norm2));
|
||||
}
|
||||
|
||||
TEST(KullbackLeibler, univariateGaussGEmu) {
|
||||
//bigger mu means greater kld
|
||||
Distribution::Normal<float> norm1(0,1);
|
||||
Distribution::Normal<float> norm2(0,1);
|
||||
Distribution::Normal<float> norm3(0,1);
|
||||
Distribution::Normal<float> norm4(1,1);
|
||||
|
||||
ASSERT_GE(Divergence::KullbackLeibler<float>::getUnivariateGauss(norm3, norm4), Divergence::KullbackLeibler<float>::getUnivariateGauss(norm1, norm2));
|
||||
ASSERT_GE(Divergence::KullbackLeibler<float>::getUnivariateGaussSymmetric(norm3, norm4), Divergence::KullbackLeibler<float>::getUnivariateGaussSymmetric(norm1, norm2));
|
||||
}
|
||||
|
||||
TEST(KullbackLeibler, univariateGaussGEsigma) {
|
||||
//bigger sigma means greater kld
|
||||
Distribution::Normal<float> norm1(0,1);
|
||||
Distribution::Normal<float> norm2(0,1);
|
||||
Distribution::Normal<float> norm5(0,1);
|
||||
Distribution::Normal<float> norm6(0,3);
|
||||
|
||||
ASSERT_GE(Divergence::KullbackLeibler<float>::getUnivariateGauss(norm5, norm6), Divergence::KullbackLeibler<float>::getUnivariateGauss(norm1, norm2));
|
||||
ASSERT_GE(Divergence::KullbackLeibler<float>::getUnivariateGaussSymmetric(norm5, norm6), Divergence::KullbackLeibler<float>::getUnivariateGaussSymmetric(norm1, norm2));
|
||||
}
|
||||
|
||||
TEST(KullbackLeibler, univariateGaussRAND) {
|
||||
|
||||
for(int i = 0; i < 20; i++){
|
||||
auto randMu1 = rand() % 100;
|
||||
auto randMu2 = rand() % 100 + 100;
|
||||
|
||||
auto randMu3 = rand() % 100;
|
||||
auto randMu4 = rand() % 100 + 200;
|
||||
|
||||
Distribution::Normal<float> norm7(randMu1,1);
|
||||
Distribution::Normal<float> norm8(randMu2,1);
|
||||
|
||||
Distribution::Normal<float> norm9(randMu3,1);
|
||||
Distribution::Normal<float> norm10(randMu4,1);
|
||||
|
||||
ASSERT_GE(Divergence::KullbackLeibler<float>::getUnivariateGauss(norm9, norm10), Divergence::KullbackLeibler<float>::getUnivariateGauss(norm8, norm7));
|
||||
ASSERT_GE(Divergence::KullbackLeibler<float>::getUnivariateGaussSymmetric(norm9, norm10), Divergence::KullbackLeibler<float>::getUnivariateGaussSymmetric(norm8, norm7));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
TEST(KullbackLeibler, multivariateGaussEQ) {
|
||||
|
||||
//eq
|
||||
Eigen::VectorXd mu1(2);
|
||||
mu1[0] = 1.0;
|
||||
mu1[1] = 1.0;
|
||||
|
||||
Eigen::VectorXd mu2(2);
|
||||
mu2[0] = 1.0;
|
||||
mu2[1] = 1.0;
|
||||
|
||||
Eigen::MatrixXd cov1(2,2);
|
||||
cov1(0,0) = 1.0;
|
||||
cov1(0,1) = 0.0;
|
||||
cov1(1,0) = 0.0;
|
||||
cov1(1,1) = 1.0;
|
||||
|
||||
Eigen::MatrixXd cov2(2,2);
|
||||
cov2(0,0) = 1.0;
|
||||
cov2(0,1) = 0.0;
|
||||
cov2(1,0) = 0.0;
|
||||
cov2(1,1) = 1.0;
|
||||
|
||||
Distribution::NormalDistributionN norm1(mu1, cov1);
|
||||
Distribution::NormalDistributionN norm2(mu2, cov2);
|
||||
|
||||
ASSERT_EQ(0.0f, Divergence::KullbackLeibler<float>::getMultivariateGauss(norm1, norm2));
|
||||
ASSERT_EQ(0.0f, Divergence::KullbackLeibler<float>::getMultivariateGaussSymmetric(norm1, norm2));
|
||||
|
||||
|
||||
}
|
||||
|
||||
TEST(KullbackLeibler, multivariateGaussGeMu) {
|
||||
|
||||
//ge mu
|
||||
Eigen::VectorXd mu1(2);
|
||||
mu1[0] = 1.0;
|
||||
mu1[1] = 1.0;
|
||||
|
||||
Eigen::VectorXd mu2(2);
|
||||
mu2[0] = 1.0;
|
||||
mu2[1] = 1.0;
|
||||
|
||||
Eigen::VectorXd mu3(2);
|
||||
mu3[0] = 1.0;
|
||||
mu3[1] = 1.0;
|
||||
|
||||
Eigen::VectorXd mu4(2);
|
||||
mu4[0] = 1.0;
|
||||
mu4[1] = 3.0;
|
||||
|
||||
Eigen::MatrixXd cov1(2,2);
|
||||
cov1(0,0) = 1.0;
|
||||
cov1(0,1) = 0.0;
|
||||
cov1(1,0) = 0.0;
|
||||
cov1(1,1) = 1.0;
|
||||
|
||||
Eigen::MatrixXd cov2(2,2);
|
||||
cov2(0,0) = 1.0;
|
||||
cov2(0,1) = 0.0;
|
||||
cov2(1,0) = 0.0;
|
||||
cov2(1,1) = 1.0;
|
||||
|
||||
Eigen::MatrixXd cov3(2,2);
|
||||
cov3(0,0) = 1.0;
|
||||
cov3(0,1) = 0.0;
|
||||
cov3(1,0) = 0.0;
|
||||
cov3(1,1) = 1.0;
|
||||
|
||||
Eigen::MatrixXd cov4(2,2);
|
||||
cov4(0,0) = 1.0;
|
||||
cov4(0,1) = 0.0;
|
||||
cov4(1,0) = 0.0;
|
||||
cov4(1,1) = 1.0;
|
||||
|
||||
Distribution::NormalDistributionN norm1(mu1, cov1);
|
||||
Distribution::NormalDistributionN norm2(mu2, cov2);
|
||||
Distribution::NormalDistributionN norm3(mu3, cov3);
|
||||
Distribution::NormalDistributionN norm4(mu4, cov4);
|
||||
|
||||
double kld12 = Divergence::KullbackLeibler<float>::getMultivariateGauss(norm1, norm2);
|
||||
double kld34 = Divergence::KullbackLeibler<float>::getMultivariateGauss(norm3, norm4);
|
||||
std::cout << kld34 << " > " << kld12 << std::endl;
|
||||
|
||||
double kld12sym = Divergence::KullbackLeibler<float>::getMultivariateGaussSymmetric(norm1, norm2);
|
||||
double kld34sym = Divergence::KullbackLeibler<float>::getMultivariateGaussSymmetric(norm3, norm4);
|
||||
std::cout << kld34sym << " > " << kld12sym << std::endl;
|
||||
|
||||
ASSERT_GE(kld34, kld12);
|
||||
ASSERT_GE(kld34sym, kld12sym);
|
||||
}
|
||||
|
||||
TEST(KullbackLeibler, multivariateGaussGeCov) {
|
||||
|
||||
//ge cov
|
||||
Eigen::VectorXd mu1(2);
|
||||
mu1[0] = 1.0;
|
||||
mu1[1] = 1.0;
|
||||
|
||||
Eigen::VectorXd mu2(2);
|
||||
mu2[0] = 1.0;
|
||||
mu2[1] = 1.0;
|
||||
|
||||
Eigen::VectorXd mu3(2);
|
||||
mu3[0] = 1.0;
|
||||
mu3[1] = 1.0;
|
||||
|
||||
Eigen::VectorXd mu4(2);
|
||||
mu4[0] = 1.0;
|
||||
mu4[1] = 1.0;
|
||||
|
||||
Eigen::MatrixXd cov1(2,2);
|
||||
cov1(0,0) = 1.0;
|
||||
cov1(0,1) = 0.0;
|
||||
cov1(1,0) = 0.0;
|
||||
cov1(1,1) = 1.0;
|
||||
|
||||
Eigen::MatrixXd cov2(2,2);
|
||||
cov2(0,0) = 1.0;
|
||||
cov2(0,1) = 0.0;
|
||||
cov2(1,0) = 0.0;
|
||||
cov2(1,1) = 1.0;
|
||||
|
||||
Eigen::MatrixXd cov3(2,2);
|
||||
cov3(0,0) = 1.0;
|
||||
cov3(0,1) = 0.0;
|
||||
cov3(1,0) = 0.0;
|
||||
cov3(1,1) = 1.0;
|
||||
|
||||
Eigen::MatrixXd cov4(2,2);
|
||||
cov4(0,0) = 3.0;
|
||||
cov4(0,1) = 0.0;
|
||||
cov4(1,0) = 0.0;
|
||||
cov4(1,1) = 1.0;
|
||||
|
||||
Distribution::NormalDistributionN norm1(mu1, cov1);
|
||||
Distribution::NormalDistributionN norm2(mu2, cov2);
|
||||
Distribution::NormalDistributionN norm3(mu3, cov3);
|
||||
Distribution::NormalDistributionN norm4(mu4, cov4);
|
||||
|
||||
double kld12 = Divergence::KullbackLeibler<float>::getMultivariateGauss(norm1, norm2);
|
||||
double kld34 = Divergence::KullbackLeibler<float>::getMultivariateGauss(norm3, norm4);
|
||||
std::cout << kld34 << " >" << kld12 << std::endl;
|
||||
|
||||
double kld12sym = Divergence::KullbackLeibler<float>::getMultivariateGaussSymmetric(norm1, norm2);
|
||||
double kld34sym = Divergence::KullbackLeibler<float>::getMultivariateGaussSymmetric(norm3, norm4);
|
||||
std::cout << kld34sym << " > " << kld12sym << std::endl;
|
||||
|
||||
ASSERT_GE(kld34, kld12);
|
||||
ASSERT_GE(kld34sym, kld12sym);
|
||||
}
|
||||
|
||||
#endif
|
||||
Reference in New Issue
Block a user