added new data-structures

added new test-cases
added flexible dijkstra calculation
added debugging log
modified: plotting, grid-generation, grid-importance,
refactoring
This commit is contained in:
2016-01-22 18:47:06 +01:00
parent 12084fe147
commit cdf97322f8
21 changed files with 720 additions and 141 deletions

129
nav/dijkstra/Dijkstra.h Normal file
View File

@@ -0,0 +1,129 @@
#ifndef DIJKSTRA_H
#define DIJKSTRA_H
#include <vector>
#include <algorithm>
#include <unordered_set>
#include "DijkstraStructs.h"
#include "../../misc/Debug.h"
#include <KLib/Assertions.h>
template <typename T> class Dijkstra {
/** all allocated nodes for the user-data inputs */
std::unordered_map<const T*, DijkstraNode<T>*> nodes;
/** all already processed edges */
std::unordered_set<DijkstraEdge<T>> usedEdges;
/** to-be-processed nodes (USE LINKED LIST INSTEAD?!) */
std::vector<DijkstraNode<T>*> toBeProcessedNodes;
public:
/** get (or create) a new node for the given user-node */
DijkstraNode<T>* getNode(const T* userNode) {
if (nodes.find(userNode) == nodes.end()) {
DijkstraNode<T>* dn = new DijkstraNode<T>(userNode);
nodes[userNode] = dn;
}
return nodes[userNode];
}
/** get the edge (bi-directional) between the two given nodes */
DijkstraEdge<T> getEdge(const DijkstraNode<T>* n1, const DijkstraNode<T>* n2) {
return DijkstraEdge<T>(n1, n2);
}
/** get the dijkstra-pendant for the given user-node */
DijkstraNode<T>* getNode(const T& userNode) {
return nodes[&userNode];
}
/** build shortest path from start to end using the provided wrapper-class */
template <typename Access> void build(const T& start, const T& end, const Access& acc) {
// NOTE: end is currently ignored!
// runs until all nodes were evaluated
Log::add("Dijkstra", "calculating dijkstra from " + (std::string)start);
// cleanup
toBeProcessedNodes.clear();
usedEdges.clear();
nodes.clear();
// run from start
const T* cur = &start;
// create a node for the start element
DijkstraNode<T>* dnStart = getNode(cur);
dnStart->cumWeight = 0;
// add this node to the processing list
toBeProcessedNodes.push_back(dnStart);
// until we are done
while(!toBeProcessedNodes.empty()) {
// get the next to-be-processed node
DijkstraNode<T>* dnSrc = toBeProcessedNodes[0];
// and remove him from the list
toBeProcessedNodes.erase(toBeProcessedNodes.begin());
// process each neighbor of the current element
for (int i = 0; i < acc.getNumNeighbors(*dnSrc->element); ++i) {
// get the neighbor itself
const T* dst = acc.getNeighbor(*dnSrc->element, i);
// get the distance-weight to the neighbor
const float weight = acc.getWeightBetween(*dnSrc->element, *dst);
_assertTrue(weight >= 0, "edge-weight must not be negative!");
// get-or-create a node for the neighbor
DijkstraNode<T>* dnDst = getNode(dst);
// get-or-create the edge describing the connection
DijkstraEdge<T> edge = getEdge(dnSrc, dnDst);
// was this edge already processed? -> skip it
if (usedEdges.find(edge) != usedEdges.end()) {continue;}
// otherwise: remember it
usedEdges.insert(edge);
// and add the node for later processing
toBeProcessedNodes.push_back(dnDst);
// update the weight to the destination?
const float potentialWeight = dnSrc->cumWeight + weight;
if (potentialWeight < dnDst->cumWeight) {
dnDst->cumWeight = potentialWeight;
dnDst->previous = dnSrc;
}
}
// sort the nodes by distance-from-start (shortest first)
auto comp = [] (const DijkstraNode<T>* n1, const DijkstraNode<T>* n2) {return n1->cumWeight < n2->cumWeight;};
std::sort(toBeProcessedNodes.begin(), toBeProcessedNodes.end(), comp);
}
Log::add("Dijkstra", "processed " + std::to_string(nodes.size()) + " nodes");
// cleanup
toBeProcessedNodes.clear();
usedEdges.clear();
}
};
#endif // DIJKSTRA_H

View File

@@ -0,0 +1,77 @@
#ifndef DIJKSTRANODE_H
#define DIJKSTRANODE_H
/**
* wrapper around a user data structure
* adds additional fields needed for dijkstra calculation
*/
template <typename T> struct DijkstraNode {
/** pos infinity */
static constexpr float INF = +99999999;
/** the user-element this node describes */
const T* element;
/** the previous dijkstra node (navigation path) */
DijkstraNode<T>* previous;
/** the weight from the start up to this element */
float cumWeight;
// /** ctor */
// DijkstraNode() : element(nullptr), previous(), cumWeight(INF) {;}
/** ctor */
DijkstraNode(const T* element) : element(element), previous(), cumWeight(INF) {;}
/** equal? (bi-dir) */
bool operator == (const DijkstraNode<T>& other) {
return element == other.element;
}
};
/**
* data structure describing the connection between two nodes
* only used to track already processed connections!
*/
template <typename T> struct DijkstraEdge {
/** the edge's source */
const DijkstraNode<T>* src;
/** the edge's destination */
const DijkstraNode<T>* dst;
/** ctor */
DijkstraEdge(const DijkstraNode<T>* src, const DijkstraNode<T>* dst) : src(src), dst(dst) {;}
/** equal? (bi-dir) */
bool operator == (const DijkstraEdge& other) const {
return ((dst == other.dst) && (src == other.src)) ||
((src == other.dst) && (dst == other.src));
}
};
//template <typename T> struct DijkstraEdgeWeighted : public DijkstraEdge<T> {
// /** the edge's weight */
// float weight;
// DijkstraEdgeWeighted(const DijkstraNode<T>* src, const DijkstraNode<T>* dst, const float weight) : DijkstraEdge<T>(src,dst), weight(weight) {;}
//};
namespace std {
template <typename T> struct hash<DijkstraEdge<T>>{
size_t operator()(const DijkstraEdge<T>& e) const {
return hash<size_t>()( (size_t)e.src^(size_t)e.dst);
}
};
}
#endif // DIJKSTRANODE_H