huge commit

- worked on about everything
- grid walker using plugable modules
- wifi models
- new distributions
- worked on geometric data-structures
- added typesafe timestamps
- worked on grid-building
- added sensor-classes
- added sensor analysis (step-detection, turn-detection)
- offline data reader
- many test-cases
This commit is contained in:
2016-08-29 08:18:44 +02:00
parent 99ee95ce7b
commit a2c9e575a2
94 changed files with 8298 additions and 257 deletions

View File

@@ -0,0 +1,23 @@
#ifndef ACCELEROMETERDATA_H
#define ACCELEROMETERDATA_H
#include <cmath>
/** data received from an accelerometer sensor */
struct AccelerometerData {
float x;
float y;
float z;
AccelerometerData() : x(0), y(0), z(0) {;}
AccelerometerData(const float x, const float y, const float z) : x(x), y(y), z(z) {;}
float magnitude() const {
return std::sqrt( x*x + y*y + z*z );
}
};
#endif // ACCELEROMETERDATA_H

View File

@@ -0,0 +1,23 @@
#ifndef GYROSCOPEDATA_H
#define GYROSCOPEDATA_H
#include <cmath>
/** data received from a gyroscope sensor */
struct GyroscopeData {
float x;
float y;
float z;
GyroscopeData() : x(0), y(0), z(0) {;}
GyroscopeData(const float x, const float y, const float z) : x(x), y(y), z(z) {;}
float magnitude() const {
return std::sqrt( x*x + y*y + z*z );
}
};
#endif // GYROSCOPEDATA_H

112
sensors/imu/StepDetection.h Normal file
View File

@@ -0,0 +1,112 @@
#ifndef STEPDETECTION_H
#define STEPDETECTION_H
#include "AccelerometerData.h"
#include "../../data/Timestamp.h"
#include <cmath>
#include <vector>
#include <KLib/misc/gnuplot/Gnuplot.h>
#include <KLib/misc/gnuplot/GnuplotSplot.h>
#include <KLib/misc/gnuplot/GnuplotSplotElementLines.h>
#include <KLib/misc/gnuplot/GnuplotPlot.h>
#include <KLib/misc/gnuplot/GnuplotPlotElementLines.h>
#include "../../Assertions.h"
/**
* simple step detection based on accelerometer magnitude.
* magnitude > threshold? -> step!
* block for several msec until detecting the next one
*/
class StepDetection {
private:
/** low pass acc-magnitude */
float avg1 = 0;
/** even-more low-pass acc-magnitude */
float avg2 = 0;
private:
class Stepper {
private:
/** block for 300 ms after every step */
const Timestamp blockTime = Timestamp::fromMS(300);
/** the threshold for detecting a spike as step */
const float threshold = 0.17;
/** block until the given timestamp before detecting additional steps */
Timestamp blockUntil;
public:
/** is the given (relative!) magnitude (mag - ~9.81) a step? */
bool isStep(const Timestamp ts, const float mag) {
// still blocking
if (ts < blockUntil) {
return false;
}
// threshold reached? -> step!
if (mag > threshold) {
// block x milliseconds until detecting the next step
blockUntil = ts + blockTime;
// we have a step
return true;
}
// no step
return false;
}
};
Stepper stepper;
public:
/** does the given data indicate a step? */
bool isStep(const Timestamp ts, const AccelerometerData& acc) {
avg1 = avg1 * 0.91 + acc.magnitude() * 0.09; // short-time average [filtered steps]
avg2 = avg2 * 0.97 + acc.magnitude() * 0.03; // long-time average [gravity]
// average maginitude must be > 9.0 to be stable enough to proceed
if (avg2 > 9) {
// gravity-free magnitude
const float avg = avg1 - avg2;
// detect steps
return stepper.isStep(ts, avg);
} else {
return false;
}
}
};
#endif // STEPDETECTION_H

493
sensors/imu/TurnDetection.h Normal file
View File

@@ -0,0 +1,493 @@
#ifndef TURNDETECTION_H
#define TURNDETECTION_H
#include "GyroscopeData.h"
#include "AccelerometerData.h"
#include "../../data/Timestamp.h"
#include <eigen3/Eigen/Dense>
#include <cmath>
#include <vector>
#include <KLib/misc/gnuplot/Gnuplot.h>
#include <KLib/misc/gnuplot/GnuplotSplot.h>
#include <KLib/misc/gnuplot/GnuplotSplotElementLines.h>
#include <KLib/misc/gnuplot/GnuplotPlot.h>
#include <KLib/misc/gnuplot/GnuplotPlotElementLines.h>
#include "../../Assertions.h"
class TurnDetection {
private:
//std::vector<AccelerometerData> accData;
std::vector<GyroscopeData> gyroData;
Timestamp lastGyro;
Timestamp lastRotMatEst;
Eigen::Matrix3f rotMat;
Eigen::Vector3f avgAcc;
Eigen::Vector3f leGyro;
public:
/** ctor */
TurnDetection() : rotMat(Eigen::Matrix3f::Identity()) {
}
float addGyroscope(const Timestamp& ts, const GyroscopeData& gyro) {
if (lastGyro.isZero()) {lastGyro = ts;}
// TESTING!
gyroData.push_back(gyro);
static Eigen::Matrix3f rotMat = Eigen::Matrix3f::Identity();
if (gyroData.size() > 25) {
Eigen::Vector3f sum = Eigen::Vector3f::Zero();
int cnt = 0;
for (GyroscopeData gd : gyroData) {
//if (gd.z > gd.x && gd.z > gd.y) {
Eigen::Vector3f vec; vec << (gd.x), (gd.y), (gd.z);
sum += vec;
++cnt;
//}
}
gyroData.clear();
if (cnt > 10) {
Eigen::Vector3f z; z << 0,0, sum(2) < 0 ? -1 : +1;
rotMat = getRotationMatrix(sum.normalized(), z.normalized());
}
}
// current gyro-reading as vector
Eigen::Vector3f vec; vec << gyro.x, gyro.y, gyro.z;
leGyro = vec;
// current value, rotated into the new coordinate system
Eigen::Vector3f curVec = rotMat * vec;
// previous value
static Eigen::Vector3f oldVec = curVec;
// time-difference between previous and current value
const Timestamp diff = ts - lastGyro;
lastGyro = ts;
// area
Eigen::Vector3f area = Eigen::Vector3f::Zero();
if (!diff.isZero()) {
area = (oldVec * diff.sec()) + // squared region
((curVec - oldVec) * 0.5 * diff.sec()); // triangle region to the next (enhances the quality)
}
// update the old value
oldVec = curVec;
const float delta = area(2);// * 0.8;
static int i = 0; ++i;
if (i % 50 == 0) {
static K::Gnuplot gp;
gp << "set view equal xyz\n";
gp << "set xrange[-1:+1]\n";
gp << "set yrange[-1:+1]\n";
gp << "set zrange[-1:+1]\n";
K::GnuplotSplot plot;
K::GnuplotSplotElementLines lines; plot.add(&lines);
K::GnuplotPoint3 p0(0,0,0);
//K::GnuplotPoint3 pO(vec(0), vec(1), vec(2));
K::GnuplotPoint3 px(rotMat(0,0), rotMat(1,0), rotMat(2,0)); //px = px * eval(0);
K::GnuplotPoint3 py(rotMat(0,1), rotMat(1,1), rotMat(2,1)); //py = py * eval(1);
K::GnuplotPoint3 pz(rotMat(0,2), rotMat(1,2), rotMat(2,2)); //pz = pz * eval(2);
lines.addSegment(p0, px*0.15);
lines.addSegment(p0, py*0.4);
lines.addSegment(p0, pz*1.0);
Eigen::Vector3f ori = leGyro;
Eigen::Vector3f re = rotMat * leGyro;
Eigen::Vector3f avg = est.lastAvg * 0.3;
gp << "set arrow 1 from 0,0,0 to " << avg(0) << "," << avg(1) << "," << avg(2) << " lw 2\n";
gp << "set arrow 2 from 0,0,0 to " << ori(0) << "," << ori(1) << "," << ori(2) << " lw 1 dashtype 2 \n";
gp << "set arrow 3 from 0,0,0 to " << re(0) << "," << re(1) << "," << re(2) << " lw 1\n";
// gp << "set arrow 2 from 0,0,0 to " << vec(0) << "," << vec(1) << "," << vec(2) << "\n";
// gp << "set arrow 3 from 0,0,0 to " << nVec(0) << "," << nVec(1) << "," << nVec(2) << "\n";
gp.draw(plot);
//gp.flush();
}
static Eigen::Vector3f sum = Eigen::Vector3f::Zero();
sum += area;
if (i % 30 == 0) {
static int idx = 0;
static K::Gnuplot gp2;
gp2 << "set arrow 1 from 0,0 to 10000,0\n";
gp2 << "set arrow 2 from 0,5 to 10000,5\n";
gp2 << "set arrow 3 from 0,10 to 10000,10\n";
K::GnuplotPlot plot2;
static K::GnuplotPlotElementLines linesX; plot2.add(&linesX);
static K::GnuplotPlotElementLines linesY; plot2.add(&linesY);
static K::GnuplotPlotElementLines linesZ; plot2.add(&linesZ);
//linesX.add(K::GnuplotPoint2(idx, sum(0) + 0));
//linesY.add(K::GnuplotPoint2(idx, sum(1) + 5));
linesZ.add(K::GnuplotPoint2(idx, sum(2) + 10));
++idx;
gp2.draw(plot2);
//gp2.flush();
}
return delta;
}
void addAccelerometer(const Timestamp& ts, const AccelerometerData& acc) {
// add accelerometer data
//pca.add(std::abs(acc.x), std::abs(acc.y), std::abs(acc.z));
est.add((acc.x), (acc.y), (acc.z));
// start with the first available timestamp
if (lastRotMatEst.isZero()) {lastRotMatEst = ts;}
// if we have at-least 1 sec of acc-data, re-calculate the current smartphone holding
if (ts - lastRotMatEst > Timestamp::fromMS(500)) {
rotMat = est.get();
lastRotMatEst = ts;
}
}
private:
// /** estimate the smartphones current holding position */
// void estimateHolding2() {
// // z-axis points through the device and is the axis we are interested in
// // http://www.kircherelectronics.com/blog/index.php/11-android/sensors/15-android-gyroscope-basics
// avgAcc = Eigen::Vector3f::Zero();
// for (const AccelerometerData& acc : accData) {
// //for (const GyroscopeData& acc : gyroData) {
// Eigen::Vector3f vec; vec << std::abs(acc.x), std::abs(acc.y), std::abs(acc.z);
// // Eigen::Vector3f vec; vec << std::abs(acc.x), std::abs(acc.y), std::abs(acc.z);
// avgAcc += vec;
// }
// //avgAcc /= accData.size();
// avgAcc = avgAcc.normalized();
// Eigen::Vector3f rev; rev << 0,0,1;
// rotMat = getRotationMatrix(avgAcc, rev);
// //Assert::isTrue(avgAcc(2) > avgAcc(0), "z is not the gravity axis");
// //Assert::isTrue(avgAcc(2) > avgAcc(1), "z is not the gravity axis");
//// Eigen::Vector3f re = rotMat * avgAcc;
//// Eigen::Vector3f diff = rev-re;
//// Assert::isTrue(diff.norm() < 0.001, "rotation error");
// }
public:
/** get a matrix that rotates the vector "from" into the vector "to" */
static Eigen::Matrix3f getRotationMatrix(const Eigen::Vector3f& from, const Eigen::Vector3f to) {
// http://math.stackexchange.com/questions/293116/rotating-one-3d-vector-to-another
const Eigen::Vector3f x = from.cross(to) / from.cross(to).norm();
const float angle = std::acos( from.dot(to) / from.norm() / to.norm() );
Eigen::Matrix3f A; A <<
0, -x(2), x(1),
x(2), 0, -x(0),
-x(1), x(0), 0;
return Eigen::Matrix3f::Identity() + (std::sin(angle) * A) + ((1-std::cos(angle)) * (A*A));
}
struct XYZ {
Eigen::Vector3f lastAvg;
Eigen::Vector3f avg;
int cnt;
XYZ() {
reset();
}
void add(const float x, const float y, const float z) {
Eigen::Vector3f vec; vec << x,y,z;
avg += vec;
++cnt;
}
Eigen::Matrix3f get() {
avg/= cnt;
lastAvg = avg;
// rotate average accelerometer into (0,0,1)
Eigen::Vector3f zAxis; zAxis << 0, 0, 1;
const Eigen::Matrix3f rotMat = getRotationMatrix(avg.normalized(), zAxis);
// sanity check
Eigen::Vector3f aligned = (rotMat * avg).normalized();
Assert::isTrue((aligned-zAxis).norm() < 0.1f, "deviation too high");
reset();
return rotMat;
}
void reset() {
cnt = 0;
avg = Eigen::Vector3f::Zero();
}
} est;
// struct RotationMatrixEstimationUsingAccAngle {
// Eigen::Vector3f lastAvg;
// Eigen::Vector3f avg;
// int cnt;
// RotationMatrixEstimationUsingAccAngle() {
// reset();
// }
// void add(const float x, const float y, const float z) {
// Eigen::Vector3f vec; vec << x,y,z;
// avg += vec;
// ++cnt;
// }
// void reset() {
// cnt = 0;
// avg = Eigen::Vector3f::Zero();
// }
// Eigen::Matrix3f get() {
// // http://www.hobbytronics.co.uk/accelerometer-info
// avg /= cnt;
// lastAvg = avg;
// //const float mag = avg.norm();
// const float baseX = 0;
// const float baseY = 0;
// const float baseZ = 0; // mag?
// const float x = avg(0) - baseX;
// const float y = avg(1) - baseY;
// const float z = avg(2) - baseZ;
// const float ax = std::atan( x / (std::sqrt(y*y + z*z)) );
// const float ay = std::atan( y / (std::sqrt(x*x + z*z)) );
// const Eigen::Matrix3f rotMat = getRotation(ay, -ax, 0); // TODO -ax or +ax?
// // sanity check
// Eigen::Vector3f zAxis; zAxis << 0, 0, 1;
// Eigen::Vector3f aligned = (rotMat * avg).normalized();
// Assert::isTrue((aligned-zAxis).norm() < 0.1f, "deviation too high");
// // int i = 0; (void) i;
// reset();
// return rotMat;
// }
// } est;
/** get a rotation matrix for the given x,y,z rotation (in radians) */
static Eigen::Matrix3f getRotation(const float x, const float y, const float z) {
const float g = x; const float b = y; const float a = z;
const float a11 = std::cos(a)*std::cos(b);
const float a12 = std::cos(a)*std::sin(b)*std::sin(g)-std::sin(a)*std::cos(g);
const float a13 = std::cos(a)*std::sin(b)*std::cos(g)+std::sin(a)*std::sin(g);
const float a21 = std::sin(a)*std::cos(b);
const float a22 = std::sin(a)*std::sin(b)*std::sin(g)+std::cos(a)*std::cos(g);
const float a23 = std::sin(a)*std::sin(b)*std::cos(g)-std::cos(a)*std::sin(g);
const float a31 = -std::sin(b);
const float a32 = std::cos(b)*std::sin(g);
const float a33 = std::cos(b)*std::cos(g);
Eigen::Matrix3f m;
m <<
a11, a12, a13,
a21, a22, a23,
a31, a32, a33;
;
return m;
}
// struct PCA {
// Eigen::Vector3f avg;
// Eigen::Vector3f lastAvg;
// Eigen::Matrix3f covar;
// int cnt = 0;
// PCA() {
// reset();
// }
// void add(const float x, const float y, const float z) {
// Eigen::Vector3f vec; vec << x,y,z;
// avg += vec;
// covar += vec*vec.transpose();
// ++cnt;
// }
// Eigen::Matrix3f get() {
// avg /= cnt;
// covar /= cnt;
// lastAvg = avg;
// std::cout << avg << std::endl;
// Eigen::Matrix3f Q = covar;// - avg*avg.transpose();
// for (int i = 0; i < 9; ++i) {Q(i) = std::abs(Q(i));}
// Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> solver(Q);
// solver.eigenvalues();
// solver.eigenvectors();
// const auto eval = solver.eigenvalues();
// const auto evec = solver.eigenvectors();
// Assert::isTrue(eval(2) > eval(1) && eval(1) > eval(0), "eigenvalues are not sorted!");
// Eigen::Matrix3f rotMat;
// rotMat.col(0) = evec.col(0);
// rotMat.col(1) = evec.col(1);
// rotMat.col(2) = evec.col(2); // 0,0,1 (z-axis) belongs to the strongest eigenvalue
// rotMat.transposeInPlace();
// //Eigen::Vector3f gy; gy << 0, 30, 30;
// Eigen::Vector3f avg1 = rotMat * avg;
// int i = 0; (void) i;
// reset();
// return rotMat;
// }
// void reset() {
// cnt = 0;
// avg = Eigen::Vector3f::Zero();
// covar = Eigen::Matrix3f::Zero();
// }
// } pca1;
// /** estimate the smartphones current holding position */
// void estimateHolding() {
// Eigen::Vector3f avg = Eigen::Vector3f::Zero();
// Eigen::Matrix3f covar = Eigen::Matrix3f::Zero();
// for (const AccelerometerData& acc : accData) {
//// for (const GyroscopeData& acc : gyroData) {
// Eigen::Vector3f vec; vec << std::abs(acc.x), std::abs(acc.y), std::abs(acc.z);
//// Eigen::Vector3f vec; vec << (acc.x), (acc.y), (acc.z);
// avg += vec;
// covar += vec * vec.transpose();
// }
// avg /= accData.size(); // TODO
// covar /= accData.size(); //TODO
// avgAcc = avg.normalized();
//// static K::Gnuplot gp;
//// gp << "set view equal xyz\n";
//// gp << "set xrange[-1:+1]\n";
//// gp << "set yrange[-1:+1]\n";
//// gp << "set zrange[-1:+1]\n";
//// K::GnuplotSplot plot;
//// K::GnuplotSplotElementLines lines; plot.add(&lines);
//// K::GnuplotPoint3 p0(0,0,0);
//// K::GnuplotPoint3 px(evec(0,0), evec(1,0), evec(2,0)); //px = px * eval(0);
//// K::GnuplotPoint3 py(evec(0,1), evec(1,1), evec(2,1)); //py = py * eval(1);
//// K::GnuplotPoint3 pz(evec(0,2), evec(1,2), evec(2,2)); //pz = pz * eval(2);
//// K::GnuplotPoint3 pa(avg(0), avg(1), avg(2));
//// lines.addSegment(p0, px);
//// lines.addSegment(p0, py);
//// lines.addSegment(p0, pz);
//// lines.addSegment(p0, pa);
//// gp.draw(plot);
//// gp.flush();
// }
};
#endif // TURNDETECTION_H