This commit is contained in:
2017-06-06 15:03:49 +02:00
122 changed files with 7794 additions and 1045 deletions

View File

@@ -45,6 +45,11 @@ public:
;
}
/** equals? */
bool operator == (const AccessPoint& o) {
return (o.mac == mac) && (o.ssid == ssid);
}
public:
/** get the AP's MAC address */

View File

@@ -1,27 +0,0 @@
#ifndef LOCATEDACCESSPOINT_H
#define LOCATEDACCESSPOINT_H
#include "AccessPoint.h"
#include "../../geo/Point3.h"
#include "../../floorplan/v2/Floorplan.h"
/**
* describes an access-point including its position (in meter)
*/
class LocatedAccessPoint : public AccessPoint, public Point3 {
public:
/** ctor */
LocatedAccessPoint(const std::string& mac, const Point3 pos_m) : AccessPoint(mac, ""), Point3(pos_m) {
;
}
/** ctor */
LocatedAccessPoint(const Floorplan::AccessPoint& ap) : AccessPoint(ap.mac, ap.name), Point3(ap.pos) {
;
}
};
#endif // LOCATEDACCESSPOINT_H

View File

@@ -7,6 +7,8 @@
#include "../../math/Stats.h"
#include "../../misc/Debug.h"
#include "WiFiMeasurements.h"
class VAPGrouper {
@@ -40,24 +42,35 @@ public:
private:
static constexpr const char* name = "VAPGrp";
/** the mode to use for grouping VAPs */
const Mode mode;
/** the signal-strength aggregation algorithm to use */
const Aggregation agg;
/** respect only outputs with at-least X occurences of one physical hardware [can be used to prevent issues] */
int minOccurences;
public:
/** ctor */
VAPGrouper(const Mode mode, const Aggregation agg) : mode(mode), agg(agg) {
VAPGrouper(const Mode mode, const Aggregation agg, const int minOccurences = 2) :
mode(mode), agg(agg), minOccurences(minOccurences) {
;
}
/** set the number of needed occurences per VAP-group to be accepted */
void setMinOccurences(const int min) {
this->minOccurences = min;
}
/** get a vap-grouped version of the given input */
WiFiMeasurements group(const WiFiMeasurements& original) const {
// first, group all VAPs into a vector [one vector per VAP-group]
// by using the modified MAC address that all VAPs have in common
std::unordered_map<MACAddress, std::vector<WiFiMeasurement>> grouped;
for (const WiFiMeasurement& m : original.entries) {
@@ -68,8 +81,9 @@ public:
}
// output
// to-be-constructed output
WiFiMeasurements result;
int skipped = 0;
// perform aggregation on each VAP-group
for (auto it : grouped) {
@@ -77,6 +91,9 @@ public:
const MACAddress& base = it.first;
const std::vector<WiFiMeasurement>& vaps = it.second;
// remove entries that do not satify the min-occurences metric
if ((int)vaps.size() < minOccurences) {++skipped; continue;}
// group all VAPs into one measurement
const WiFiMeasurement groupedMeasurement = groupVAPs(base, vaps);
@@ -85,6 +102,13 @@ public:
}
// debug
Log::add(name,
"grouped " + std::to_string(original.entries.size()) + " measurements " +
"into " + std::to_string(result.entries.size()) + " [omitted: " + std::to_string(skipped) + "]",
true
);
// done
return result;

View File

@@ -9,7 +9,7 @@
*/
class WiFiMeasurement {
public:
private:
friend class VAPGrouper;
@@ -19,32 +19,55 @@ public:
/** the measured signal strength */
float rssi;
/** OPTIONAL. frequence the signal was received */
float freq = NAN;
/** OPTIONAL. timestamp the measurement was recorded at */
Timestamp ts;
public:
/** ctor */
WiFiMeasurement(const AccessPoint& ap, const float rssi) : ap(ap), rssi(rssi) {
WiFiMeasurement(const AccessPoint& ap, const float rssi) : ap(ap), rssi(rssi), freq(NAN) {
;
}
/** ctor with timestamp */
WiFiMeasurement(const AccessPoint& ap, const float rssi, const Timestamp ts) : ap(ap), rssi(rssi), ts(ts) {
;
}
/** ctor with freq*/
WiFiMeasurement(const AccessPoint& ap, const float rssi, const float freq) : ap(ap), rssi(rssi), freq(freq) {
;
}
/** ctor with timestamp */
WiFiMeasurement(const AccessPoint& ap, const float rssi, const Timestamp ts) : ap(ap), rssi(rssi), ts(ts) {
;
}
/** ctor with timestamp and freq*/
WiFiMeasurement(const AccessPoint& ap, const float rssi, const float freq, const Timestamp ts) : ap(ap), rssi(rssi), freq(freq), ts(ts) {
;
}
public:
/** get the AP we got the measurement for */
const AccessPoint& getAP() const {return ap;}
/** get the AP we got the measurement for */
const AccessPoint& getAP() const {return ap;}
/** get the measurement's signal strength */
float getRSSI() const {return rssi;}
/** get the measurement's signal strength */
float getRSSI() const {return rssi;}
/** OPTIONAL: get the measurement's timestamp (if known!) */
const Timestamp& getTimestamp() const {return ts;}
/** OPTIONAL: get the measurement's timestamp (if known!) */
const Timestamp& getTimestamp() const {return ts;}
/** OPTIONAL: get the measurement's frequence (if known!) */
float getFrequency() const {return freq;}
/** set another signal strength */
void setRssi(float value){rssi = value;}
/** set the timestamp */
void setTimestamp(const Timestamp& val){ts = val;}
};
#endif // WIFIMEASUREMENT_H

View File

@@ -22,6 +22,56 @@ struct WiFiMeasurements {
return res;
}
/** get the measurements for the given MAC [if available] otherwise null */
const WiFiMeasurement* getForMac(const MACAddress& mac) const {
for (const WiFiMeasurement& m : entries) {
if (m.getAP().getMAC() == mac) {
return &m;
}
}
return nullptr;
}
/** remove the entry for the given MAC (if any) */
void remove(const MACAddress& mac) {
for (size_t i = 0; i < entries.size(); ++i) {
if (entries[i].getAP().getMAC() == mac) {
entries.erase(entries.begin() + i);
break;
}
}
}
/** create a combination */
static WiFiMeasurements mix(const WiFiMeasurements& a, const WiFiMeasurements& b, float sec = 3) {
Timestamp max;
WiFiMeasurements res;
for (const WiFiMeasurement& m : a.entries) {
res.entries.push_back(m);
if (m.getTimestamp() > max) {max = m.getTimestamp();}
}
for (const WiFiMeasurement& m : b.entries) {
res.entries.push_back(m);
if (m.getTimestamp() > max) {max = m.getTimestamp();}
}
std::vector<WiFiMeasurement> tmp;
std::swap(res.entries, tmp);
for (const WiFiMeasurement& m : tmp) {
if ((max - m.getTimestamp()).sec() < sec) {
res.entries.push_back(m);
}
}
return res;
}
};
#endif // WIFIMEASUREMENTS_H

View File

@@ -5,6 +5,7 @@
#include "model/WiFiModel.h"
#include "../../math/Distributions.h"
#include "VAPGrouper.h"
#include "../../floorplan/v2/Floorplan.h"
#include <unordered_map>
@@ -16,7 +17,7 @@ class WiFiObserverFree : public WiFiProbability {
private:
const float sigma = 8.0f;
const float sigma;
const float sigmaPerSecond = 3.0f;
@@ -26,15 +27,25 @@ private:
/** the map's floorplan */
Floorplan::IndoorMap* map;
std::vector<AccessPoint> allAPs;
bool useError = false;
public:
WiFiObserverFree(const float sigma, WiFiModel& model) : sigma(sigma), model(model) {
allAPs = model.getAllAPs();
}
void setUseError(const bool useError) {
this->useError = useError;
}
double getProbability(const Point3& pos_m, const Timestamp curTime, const WiFiMeasurements& obs) const {
double prob = 1.0;
//double prob = 0;
int numMatchingAPs = 0;
// process each measured AP
@@ -49,7 +60,6 @@ public:
// NaN? -> AP not known to the model -> skip
if (modelRSSI != modelRSSI) {continue;}
// the scan's RSSI
const float scanRSSI = entry.getRSSI();
@@ -57,28 +67,85 @@ public:
const Timestamp age = curTime - entry.getTimestamp();
Assert::isTrue(age.ms() >= 0, "found a negative wifi measurement age. this does not make sense");
Assert::isTrue(age.ms() <= 40000, "found a 40 second old wifi measurement. maybe there is a coding error?");
Assert::isTrue(age.ms() <= 60000, "found a 60 second old wifi measurement. maybe there is a coding error?");
Assert::isBetween(scanRSSI, -100.0f, -30.0f, "scan-rssi out of range");
//Assert::isBetween(modelRSSI, -160.0f, -10.0f, "model-rssi out of range");
// sigma grows with measurement age
const float sigma = this->sigma + this->sigmaPerSecond * age.sec();
// probability for this AP
double local = Distribution::Normal<double>::getProbability(modelRSSI, sigma, scanRSSI);
//double local = Distribution::Exponential<double>::getProbability(0.1, std::abs(modelRSSI-scanRSSI));
// also add the error value? [location is OK but model is wrong]
if (useError) {
local = 0.95 * local + 0.05 * (1.0-local);
//local = 0.95 * local + 0.05;
}
// update probability
prob *= Distribution::Normal<double>::getProbability(modelRSSI, sigma, scanRSSI);
//prob *= Distribution::Region<double>::getProbability(modelRSSI, sigma, scanRSSI);
prob *= local;
++numMatchingAPs;
}
// sanity check
Assert::isTrue(numMatchingAPs > 0, "not a single measured AP was matched against known ones. coding error? model error?");
//Assert::isTrue(numMatchingAPs > 0, "not a single measured AP was matched against known ones. coding error? model error?");
return prob;
}
/**
* for some locations it might make sense to also look at APs
* that have NOT been discovered by the smartphone but SHOULD
* be very well receivable at a location.
* such locations can be opted-out by using this veto-probability
*/
double getVeto(const Point3& pos_m, const Timestamp curTime, const WiFiMeasurements& obs) const {
(void) curTime;
struct APR {
AccessPoint ap;
float rssi;
APR(const AccessPoint& ap, const float rssi) : ap(ap), rssi(rssi) {;}
};
std::vector<APR> all;
for (const AccessPoint& ap : allAPs) {
const float rssi = model.getRSSI(ap.getMAC(), pos_m);
if (rssi != rssi) {continue;} // unknown to the model
all.push_back(APR(ap, rssi));
}
// stort by RSSI
auto comp = [&] (const APR& apr1, const APR& apr2) {return apr1.rssi > apr2.rssi;};
std::sort(all.begin(), all.end(), comp);
int numVetos = 0;
for (int i = 0; i < 3; ++i) {
const APR& apr = all[i];
const WiFiMeasurement* mes = obs.getForMac(apr.ap.getMAC());
const float rssiScan = (mes) ? (mes->getRSSI()) : (-100);
const float rssiModel = apr.rssi;
const float diff = std::abs(rssiScan - rssiModel);
if (diff > 20) {++numVetos;}
}
if (numVetos == 0) {return 0.70;}
if (numVetos == 1) {return 0.29;}
else {return 0.01;}
}
template <typename Node> double getProbability(const Node& n, const Timestamp curTime, const WiFiMeasurements& obs, const int age_ms = 0) const {
throw Exception("todo??");
return this->getProbability(n.inMeter() + Point3(0,0,1.3), curTime, obs);
}
};

View File

@@ -59,7 +59,7 @@ public:
// after some runtime, check whether the wifi timestamps make sense
// those must not be zero, otherwise something is wrong!
if (!obs.entries.empty()) {
Assert::isFalse(curTime.ms() > 10000 && obs.entries.front().ts.isZero(), "WiFiMeasurement timestamp is 0. this does not make sense...");
Assert::isFalse(curTime.ms() > 10000 && obs.entries.front().getTimestamp().isZero(), "WiFiMeasurement timestamp is 0. this does not make sense...");
}
// process each observed measurement
@@ -73,7 +73,7 @@ public:
const Timestamp age = curTime - measurement.getTimestamp();
// sigma grows with measurement age
float sigma = this->sigma + this->sigmaPerSecond * age.sec();
float sigma = this->sigma + this->sigmaPerSecond * age.sec();
// the RSSI from the scan
const float measuredRSSI = measurement.getRSSI();
@@ -102,8 +102,7 @@ public:
}
// sanity check
// Assert::isTrue(numMatchingAPs > 0, "not a single measured AP was matched against known ones. coding error? model error?");
// if (numMatchingAPs == 0) {return 0;}
//Assert::isTrue(numMatchingAPs > 0, "not a single measured AP was matched against known ones. coding error? model error?");
// as not every node has the same number of visible/matching APs
// we MUST return something like the average probability

View File

@@ -0,0 +1,106 @@
#ifndef WIFIQUALITYANALYZER_H
#define WIFIQUALITYANALYZER_H
#include "WiFiMeasurements.h"
#include <unordered_set>
class WiFiQualityAnalyzer {
private:
int historySize = 3;
std::vector<WiFiMeasurements> history;
float quality = 0;
public:
/** attach the current measurement and infer the quality */
void add(const WiFiMeasurements& mes) {
// update the history
history.push_back(mes);
while(history.size() > historySize) {
history.erase(history.begin());
}
// recalculate
update();
}
/** get a quality score for the WiFi */
float getQuality() const {
return quality;
}
private:
/** re-calculate the current quality */
void update() {
const float qCnt = getQualityByCount();
const float qAvgdB = getQualityByAvgDB();
quality = qAvgdB;
}
/** score [0:1] based on the average sig-strength. the higher the better */
float getQualityByAvgDB() const {
// stats
float sum = 0;
float sum2 = 0;
float cnt = 0;
for (const WiFiMeasurements& mes : history) {
for (const WiFiMeasurement& m : mes.entries) {
const float rssi = m.getRSSI();
sum += rssi;
sum2 += rssi*rssi;
++cnt;
}
}
// average sig strength
const float avg = sum/cnt;
const float avg2 = sum2/cnt;
const float stdDev = std::sqrt(avg2 - avg*avg);
// avg rssi score
const float minRSSI = -85;
const float maxRSSI = -70;
float score1 = (avg-minRSSI) / (maxRSSI-minRSSI); // min = 0; max = 1
if (score1 > 1) {score1 = 1;}
if (score1 < 0) {score1 = 0;}
//const float score1 = 1.0 - std::exp(-0.07 * (avg-minRSSI));
// std dev score
const float score2 = 1.0 - std::exp(-1.0 * stdDev);
return score1 * score2;
}
/** quality score [0:1] according to the number of seen APs */
float getQualityByCount() const {
// distinct macs
std::unordered_set<MACAddress> macs;
for (const WiFiMeasurements& mes : history) {
for (const WiFiMeasurement& m : mes.entries) {
macs.insert(m.getAP().getMAC());
}
}
// number of distinct macs
const int cnt = macs.size();
// see function plot. function between [0.0:1.0] has 0.5 around 7 seen APs
return 1.0 - std::exp(-0.1 * cnt);
}
};
#endif // WIFIQUALITYANALYZER_H

View File

@@ -1,7 +1,13 @@
#ifndef WIFIMODEL_H
#define WIFIMODEL_H
#include "../LocatedAccessPoint.h"
#include "../AccessPoint.h"
#include "../../../geo/Point3.h"
#include <vector>
#include "../../../data/XMLserialize.h"
/**
* interface for signal-strength prediction models.
@@ -9,10 +15,13 @@
* the model is passed a MAC-address of an AP in question, and a position.
* hereafter the model returns the RSSI for this AP at the questioned location.
*/
class WiFiModel {
class WiFiModel : public XMLserialize {
public:
/** dtor */
virtual ~WiFiModel() {;}
// /** get the given access-point's RSSI at the provided location */
// virtual float getRSSI(const LocatedAccessPoint& ap, const Point3 p) = 0;
@@ -27,6 +36,7 @@ public:
*/
virtual float getRSSI(const MACAddress& accessPoint, const Point3 position_m) const = 0;
};
#endif // WIFIMODEL_H

View File

@@ -0,0 +1,32 @@
#ifndef WIFIMODELFACTORY_H
#define WIFIMODELFACTORY_H
#include "WiFiModel.h"
#include "../../../floorplan/v2/Floorplan.h"
/**
* this class can instantiate WiFiModels based on serialized XML files
*/
class WiFiModelFactory {
private:
Floorplan::IndoorMap* map;
public:
/** ctor. needs the floorplan for some models */
WiFiModelFactory(Floorplan::IndoorMap* map) : map(map) {
;
}
/** parse model from XML file */
WiFiModel* loadXML(const std::string& file);
/** parse model from XML node */
WiFiModel* readFromXML(XMLDoc* doc, XMLElem* src);
};
#endif // WIFIMODELFACTORY_H

View File

@@ -0,0 +1,42 @@
#ifndef WIFIMODELFACTORYIMPL_H
#define WIFIMODELFACTORYIMPL_H
#include "WiFiModelFactory.h"
#include "WiFiModelLogDist.h"
#include "WiFiModelLogDistCeiling.h"
#include "WiFiModelPerFloor.h"
#include "WiFiModelPerBBox.h"
WiFiModel* WiFiModelFactory::loadXML(const std::string& file) {
XMLDoc doc;
XMLserialize::assertOK(doc.LoadFile(file.c_str()), doc, "error while loading file");
XMLElem* root = doc.FirstChildElement("root");
return readFromXML(&doc, root);
}
WiFiModel* WiFiModelFactory::readFromXML(XMLDoc* doc, XMLElem* src) {
// each model attaches its "type" during serialization
const std::string type = src->Attribute("type");
WiFiModel* mdl = nullptr;
// create an instance for the model
if (type == "WiFiModelLogDist") {mdl = new WiFiModelLogDist();}
else if (type == "WiFiModelLogDistCeiling") {mdl = new WiFiModelLogDistCeiling(map);}
else if (type == "WiFiModelPerFloor") {mdl = new WiFiModelPerFloor(map);}
else if (type == "WiFiModelPerBBox") {mdl = new WiFiModelPerBBox(map);}
else {throw Exception("invalid model type given: " + type);}
// load the model from XML
mdl->readFromXML(doc, src);
// done
return mdl;
}
#endif // WIFIMODELFACTORYIMPL_H

View File

@@ -4,6 +4,8 @@
#include "WiFiModel.h"
#include "LogDistanceModel.h"
#include <unordered_map>
/**
* signal-strength estimation using log-distance model
*/
@@ -86,6 +88,14 @@ public:
}
void readFromXML(XMLDoc* doc, XMLElem* src) override {
throw Exception("not yet implemented");
}
void writeToXML(XMLDoc* doc, XMLElem* dst) override {
throw Exception("not yet implemented");
}
};
#endif // WIFIMODELLOGDIST_H

View File

@@ -2,6 +2,7 @@
#define WIFIMODELLOGDISTCEILING_H
#include "../../../floorplan/v2/Floorplan.h"
#include "../../../floorplan/v2/FloorplanCeilings.h"
#include "../../../Assertions.h"
#include "WiFiModel.h"
@@ -9,6 +10,8 @@
#include "../VAPGrouper.h"
#include "../../../misc/Debug.h"
#include "../../../data/XMLserialize.h"
/**
* signal-strength estimation using log-distance model
* including ceilings between AP and position
@@ -36,24 +39,28 @@ private:
/** map of all APs (and their parameters) known to the model */
std::unordered_map<MACAddress, APEntry> accessPoints;
/** position (height) of all ceilings (in meter) */
std::vector<float> ceilingsAtHeight_m;
// /** position (height) of all ceilings (in meter) */
// std::vector<float> ceilingsAtHeight_m;
Floorplan::Ceilings ceilings;
public:
/** ctor with floorplan (needed for ceiling position) */
WiFiModelLogDistCeiling(const Floorplan::IndoorMap* map) {
WiFiModelLogDistCeiling(const Floorplan::IndoorMap* map) : ceilings(map) {
// sanity checks
Assert::isTrue(map->floors.size() >= 1, "map has no floors?!");
// position of all ceilings
for (Floorplan::Floor* f : map->floors) {
ceilingsAtHeight_m.push_back(f->atHeight);
}
}
/** get the entry for the given mac. exception if missing */
const APEntry& getAP(const MACAddress& mac) const {
const auto& it = accessPoints.find(mac);
if (it == accessPoints.end()) {throw Exception("model does not contain an entry for " + mac.asString());}
return it->second;
}
/** get a list of all APs known to the model */
std::vector<AccessPoint> getAllAPs() const {
std::vector<AccessPoint> aps;
@@ -62,38 +69,47 @@ public:
}
/** load AP information from the floorplan. use the given fixed TXP/EXP/WAF for all APs */
void loadAPs(const Floorplan::IndoorMap* map, const float txp = -40.0f, const float exp = 2.5f, const float waf = -8.0f) {
void loadAPs(const Floorplan::IndoorMap* map, const float txp = -40.0f, const float exp = 2.5f, const float waf = -8.0f, const bool assertSafe = true) {
for (const Floorplan::Floor* floor : map->floors) {
for (const Floorplan::AccessPoint* ap : floor->accesspoints) {
const APEntry ape(ap->getPos(floor), txp, exp, waf);
addAP(MACAddress(ap->mac), ape);
addAP(MACAddress(ap->mac), ape, assertSafe);
}
}
}
/** load AP information from the floorplan. use the given fixed TXP/EXP/WAF for all APs */
void loadAPs(const Floorplan::IndoorMap* map, const VAPGrouper& vg, const float txp = -40.0f, const float exp = 2.5f, const float waf = -8.0f) {
/**
* load AP information from the floorplan.
* use the given fixed TXP/EXP/WAF for all APs.
* usually txp,exp,waf are checked for a sane range. if you know what you are doing, set assertSafe to false!
*/
void loadAPs(const Floorplan::IndoorMap* map, const VAPGrouper& vg, const float txp = -40.0f, const float exp = 2.5f, const float waf = -8.0f, const bool assertSafe = true) {
for (const Floorplan::Floor* floor : map->floors) {
for (const Floorplan::AccessPoint* ap : floor->accesspoints) {
const APEntry ape(ap->getPos(floor), txp, exp, waf);
const MACAddress mac = vg.getBaseMAC(MACAddress(ap->mac));
Log::add("WiModLDC", "AP: " + ap->mac + " -> " + mac.asString());
addAP(MACAddress(mac), ape);
Log::add("WiModLDC", "AP added! given: " + ap->mac + " -> after VAP: " + mac.asString());
addAP(MACAddress(mac), ape, assertSafe);
}
}
}
/** make the given AP (and its parameters) known to the model */
void addAP(const MACAddress& accessPoint, const APEntry& params) {
/**
* make the given AP (and its parameters) known to the model
* usually txp,exp,waf are checked for a sane range. if you know what you are doing, set assertSafe to false!
*/
void addAP(const MACAddress& accessPoint, const APEntry& params, const bool assertSafe = true) {
// sanity check
Assert::isBetween(params.waf, -99.0f, 0.0f, "WAF out of bounds [-99:0]");
Assert::isBetween(params.txp, -50.0f, -30.0f, "TXP out of bounds [-50:-30]");
Assert::isBetween(params.exp, 1.0f, 4.0f, "EXP out of bounds [1:4]");
if (assertSafe) {
Assert::isBetween(params.waf, -99.0f, 0.0f, "WAF out of bounds [-99:0]");
Assert::isBetween(params.txp, -50.0f, -30.0f, "TXP out of bounds [-50:-30]");
Assert::isBetween(params.exp, 1.0f, 4.0f, "EXP out of bounds [1:4]");
}
Assert::equal(accessPoints.find(accessPoint), accessPoints.end(), "AccessPoint already present! VAP-Grouping issue?");
@@ -102,6 +118,14 @@ public:
}
/**
* make the given AP (and its parameters) known to the model
* usually txp,exp,waf are checked for a sane range. if you know what you are doing, set assertSafe to false!
*/
void addAP(const MACAddress& accessPoint, const Point3 pos_m, const float txp, const float exp, const float waf, const bool assertSafe = true) {
addAP(accessPoint, APEntry(pos_m, txp, exp, waf), assertSafe);
}
/** remove all added APs */
void clear() {
accessPoints.clear();
@@ -134,71 +158,71 @@ public:
const float rssiLOS = LogDistanceModel::distanceToRssi(params.txp, params.exp, distance_m);
// WAF loss (params.waf is a negative value!) -> WAF loss is also a negative value
const float wafLoss = params.waf * numCeilingsBetween(position_m, params.position_m);
//const float wafLoss = params.waf * ceilings.numCeilingsBetween(position_m, params.position_m);
const float wafLoss = params.waf * ceilings.numCeilingsBetweenFloat(position_m, params.position_m);
//const float wafLoss = params.waf * ceilings.numCeilingsBetweenLinearInt(position_m, params.position_m);
// combine
return rssiLOS + wafLoss;
const float res = rssiLOS + wafLoss;
// sanity check
Assert::isNotNaN(res, "detected NaN within WiFiModelLogDistCeiling::getRSSI()");
// ok
return res;
}
void writeToXML(XMLDoc* doc, XMLElem* dst) override {
// set my type
dst->SetAttribute("type", "WiFiModelLogDistCeiling");
protected:
FRIEND_TEST(LogDistanceCeilingModel, numCeilings);
FRIEND_TEST(LogDistanceCeilingModel, numCeilingsFloat);
/** get the number of ceilings between z1 and z2 */
float numCeilingsBetweenFloat(const Point3 pos1, const Point3 pos2) const {
const float zMin = std::min(pos1.z, pos2.z);
const float zMax = std::max(pos1.z, pos2.z);
float cnt = 0;
for (const float z : ceilingsAtHeight_m) {
if (zMin < z && zMax > z) {
const float dmax = zMax - z;
cnt += (dmax > 1) ? (1) : (dmax);
}
for (const auto& it : accessPoints) {
const MACAddress& mac = it.first;
const APEntry& ape = it.second;
XMLElem* xap = doc->NewElement("ap");
xap->SetAttribute("mac", mac.asString().c_str());
xap->SetAttribute("px", ape.position_m.x);
xap->SetAttribute("py", ape.position_m.y);
xap->SetAttribute("pz", ape.position_m.z);
xap->SetAttribute("txp", ape.txp);
xap->SetAttribute("exp", ape.exp);
xap->SetAttribute("waf", ape.waf);
dst->InsertEndChild(xap);
}
return cnt;
for (const float atHeight_m : ceilings.getCeilings()) {
XMLElem* xceil = doc->NewElement("ceiling");
xceil->SetAttribute("atHeight", atHeight_m);
dst->InsertEndChild(xceil);
}
}
/** get the number of ceilings between z1 and z2 */
int numCeilingsBetween(const Point3 pos1, const Point3 pos2) const {
void readFromXML(XMLDoc* doc, XMLElem* src) override {
int cnt = 0;
const float zMin = std::min(pos1.z, pos2.z);
const float zMax = std::max(pos1.z, pos2.z);
// check type
if (std::string("WiFiModelLogDistCeiling") != src->Attribute("type")) {throw Exception("invalid model type");}
#ifdef WITH_ASSERTIONS
accessPoints.clear();
ceilings.clear();
static int numNear = 0;
static int numFar = 0;
for (const float z : ceilingsAtHeight_m) {
const float diff = std::min( std::abs(z-zMin), std::abs(z-zMax) );
if (diff < 0.1) {++numNear;} else {++numFar;}
}
if ((numNear + numFar) > 150000) {
Assert::isTrue(numNear < numFar*0.1,
"many requests to the WiFiModel address nodes (very) near to a ground! \
due to rounding issues, determining the number of floors between AP and point-in-question is NOT possible! \
expect very wrong outputs! \
consider adding the person's height to the questioned positions: p += Point3(0,0,1.3) "
XML_FOREACH_ELEM_NAMED("ap", xap, src) {
MACAddress mac = MACAddress(xap->Attribute("mac"));
APEntry ape(
Point3(xap->FloatAttribute("px"), xap->FloatAttribute("py"), xap->FloatAttribute("pz")),
xap->FloatAttribute("txp"),
xap->FloatAttribute("exp"),
xap->FloatAttribute("waf")
);
}
#endif
for (const float z : ceilingsAtHeight_m) {
if (zMin < z && zMax > z) {++cnt;}
accessPoints.insert( std::make_pair(mac, ape) );
}
return cnt;
XML_FOREACH_ELEM_NAMED("ceiling", xceil, src) {
const float atHeight_m = xceil->FloatAttribute("atHeight");
ceilings.addCeiling(atHeight_m);
}
}

View File

@@ -0,0 +1,167 @@
#ifndef WIFIMODELPERBBOX_H
#define WIFIMODELPERBBOX_H
#include "../AccessPoint.h"
#include "../../../geo/Point3.h"
#include "../../../geo/BBoxes3.h"
#include <vector>
#include "WiFiModelFactory.h"
/**
* FOR TESTING
*
* this model allows using a different sub-models
* identified by a bound-box to reduce the error
*/
class WiFiModelPerBBox : public WiFiModel {
struct ModelForBBoxes {
WiFiModel* mdl;
BBoxes3 bboxes;
/** ctor */
ModelForBBoxes(WiFiModel* mdl, BBoxes3 bboxes) : mdl(mdl), bboxes(bboxes) {;}
/** does this entry apply to the given position? */
bool matches(const Point3 pt) const {
if (bboxes.get().empty()) {throw Exception("no bbox(es) given for model!");}
return bboxes.contains(pt);
}
};
Floorplan::IndoorMap* map;
/** all contained models [one per bbox] */
std::vector<ModelForBBoxes> models;
public:
WiFiModelPerBBox(Floorplan::IndoorMap* map) : map(map) {
;
}
/** dtor */
virtual ~WiFiModelPerBBox() {
}
/** get a list of all APs known to the model */
std::vector<AccessPoint> getAllAPs() const override {
// combine all submodels
std::vector<AccessPoint> res;
for (const ModelForBBoxes& sub : models) {
for (const AccessPoint& ap : sub.mdl->getAllAPs()) {
if (std::find(res.begin(), res.end(), ap) == res.end()) { // TODO use map instead?
res.push_back(ap);
}
}
}
return res;
}
void add(WiFiModel* mdl, const BBoxes3 bboxes) {
if (bboxes.get().empty()) {throw Exception("no bbox(es) given for model!");}
ModelForBBoxes mfb(mdl, bboxes);
models.push_back(mfb);
}
float getRSSI(const MACAddress& accessPoint, const Point3 position_m) const override {
for (const ModelForBBoxes& mfb : models) {
if (mfb.matches(position_m)) {return mfb.mdl->getRSSI(accessPoint, position_m);}
}
return -120;
}
void readFromXML(XMLDoc* doc, XMLElem* src) override {
// check type
if (std::string("WiFiModelPerBBox") != src->Attribute("type")) {throw Exception("invalid model type");}
models.clear();
// model factory [create models based on XMl content]
WiFiModelFactory fac(map);
// parse all contained models [one per floor]
XML_FOREACH_ELEM_NAMED("entry", xentry, src) {
// all bboxes
BBoxes3 bboxes;
XML_FOREACH_ELEM_NAMED("bbox", xbbox, xentry) {
const float x1 = xbbox->FloatAttribute("x1");
const float y1 = xbbox->FloatAttribute("y1");
const float z1 = xbbox->FloatAttribute("z1");
const float x2 = xbbox->FloatAttribute("x2");
const float y2 = xbbox->FloatAttribute("y2");
const float z2 = xbbox->FloatAttribute("z2");
const BBox3 bbox(Point3(x1,y1,z1), Point3(x2,y2,z2));
bboxes.add(bbox);
}
// node for the model
XMLElem* xmodel = xentry->FirstChildElement("model");
// let the factory instantiate the model
WiFiModel* mdl = fac.readFromXML(doc, xmodel);
// add
models.push_back(ModelForBBoxes(mdl, bboxes));
}
}
void writeToXML(XMLDoc* doc, XMLElem* dst) override {
// set my type
dst->SetAttribute("type", "WiFiModelPerBBox");
for (const ModelForBBoxes& mfb : models) {
// all models
XMLElem* xentry = doc->NewElement("entry"); {
// each bbox
for (const BBox3& bbox : mfb.bboxes.get()) {
XMLElem* xbbox = doc->NewElement("bbox"); {
xbbox->SetAttribute("x1", bbox.getMin().x);
xbbox->SetAttribute("y1", bbox.getMin().y);
xbbox->SetAttribute("z1", bbox.getMin().z);
xbbox->SetAttribute("x2", bbox.getMax().x);
xbbox->SetAttribute("y2", bbox.getMax().y);
xbbox->SetAttribute("z2", bbox.getMax().z);
}; xentry->InsertFirstChild(xbbox);
}
// the corresponding model
XMLElem* xmodel = doc->NewElement("model"); {
mfb.mdl->writeToXML(doc, xmodel);
}; xentry->InsertEndChild(xmodel);
}; dst->InsertEndChild(xentry);
}
}
};
#endif // WIFIMODELPERBBOX_H

View File

@@ -0,0 +1,133 @@
#ifndef WIFIMODELPERFLOOR_H
#define WIFIMODELPERFLOOR_H
#include "../AccessPoint.h"
#include "../../../geo/Point3.h"
#include <vector>
#include "WiFiModelFactory.h"
/**
* FOR TESTING
*
* this model allows using a different sub-models for each floor to reduce the error
*/
class WiFiModelPerFloor : public WiFiModel {
struct ModelForFloor {
float fromZ;
float toZ;
WiFiModel* mdl;
/** ctor */
ModelForFloor(const float fromZ, const float toZ, WiFiModel* mdl) : fromZ(fromZ), toZ(toZ), mdl(mdl) {;}
/** does this entry apply to the given z-position? */
bool matches(const float z) const {
return (fromZ <= z && z < toZ);
}
};
Floorplan::IndoorMap* map;
/** all contained models [one per floor] */
std::vector<ModelForFloor> models;
public:
WiFiModelPerFloor(Floorplan::IndoorMap* map) : map(map) {
;
}
/** dtor */
virtual ~WiFiModelPerFloor() {
}
/** get a list of all APs known to the model */
std::vector<AccessPoint> getAllAPs() const override {
// combine all submodels
std::vector<AccessPoint> res;
for (const ModelForFloor& sub : models) {
for (const AccessPoint& ap : sub.mdl->getAllAPs()) {
if (std::find(res.begin(), res.end(), ap) == res.end()) { // TODO use map instead?
res.push_back(ap);
}
}
}
return res;
}
void add(WiFiModel* mdl, const Floorplan::Floor* floor) {
ModelForFloor mff(floor->atHeight, floor->atHeight+floor->height, mdl);
models.push_back(mff);
}
float getRSSI(const MACAddress& accessPoint, const Point3 position_m) const override {
for (const ModelForFloor& mff : models) {
if (mff.matches(position_m.z)) {return mff.mdl->getRSSI(accessPoint, position_m);}
}
return -120;
}
void readFromXML(XMLDoc* doc, XMLElem* src) override {
// check type
if (std::string("WiFiModelPerFloor") != src->Attribute("type")) {throw Exception("invalid model type");}
models.clear();
// model factory [create models based on XMl content]
WiFiModelFactory fac(map);
// parse all contained models [one per floor]
XML_FOREACH_ELEM_NAMED("floor", xfloor, src) {
// floor params
const float z1 = xfloor->FloatAttribute("z1");
const float z2 = xfloor->FloatAttribute("z2");
// node for the model
XMLElem* xmodel = xfloor->FirstChildElement("model");
// let the factory instantiate the model
WiFiModel* mdl = fac.readFromXML(doc, xmodel);
// add
models.push_back(ModelForFloor(z1, z2, mdl));
}
}
void writeToXML(XMLDoc* doc, XMLElem* dst) override {
// set my type
dst->SetAttribute("type", "WiFiModelPerFloor");
for (const ModelForFloor& mff : models) {
XMLElem* xfloor = doc->NewElement("floor"); {
xfloor->SetAttribute("z1", mff.fromZ);
xfloor->SetAttribute("z2", mff.toZ);
XMLElem* xmodel = doc->NewElement("model"); {
mff.mdl->writeToXML(doc, xmodel);
}; xfloor->InsertEndChild(xmodel);
}; dst->InsertEndChild(xfloor);
}
}
};
#endif // WIFIMODELPERFLOOR_H

View File

@@ -0,0 +1,8 @@
#ifndef WIFIMODELS_H
#define WIFIMODELS_H
#include "WiFiModel.h"
#include "WiFiModelFactory.h"
#include "WiFiModelFactoryImpl.h"
#endif // WIFIMODELS_H

View File

@@ -8,10 +8,10 @@
#include <unordered_map>
/**
* denotes a wifi fingerprint
* known position and several measurements conducted at this position
* denotes a wifi fingerprint:
* known position and 1-n measurements [wifi-scan on all channels] conducted at this position
*
* as several measurements were conducted, each AP is usually contained more than once!
* if more than one measurement is conducted, each AP is contained more than once!
*/
struct WiFiFingerprint {
@@ -19,7 +19,7 @@ struct WiFiFingerprint {
/** real-world-position that was measured */
Point3 pos_m;
/** measurements (APs) at the given location */
/** seen APs at the given location */
WiFiMeasurements measurements;
@@ -29,9 +29,11 @@ struct WiFiFingerprint {
/** ctor */
WiFiFingerprint(const Point3 pos_m) : pos_m(pos_m) {;}
/** ctor */
WiFiFingerprint(const Point3 pos_m, const WiFiMeasurements& measurements) : pos_m(pos_m), measurements(measurements) {;}
/** as each AP is contained more than once (scanned more than once), group them by MAC and use the average RSSI */
/** as each AP might be contained more than once (scanned more than once), group them by MAC and use the average RSSI */
WiFiMeasurements average() {
// group scans by MAC (all measurements for one AP)
@@ -46,9 +48,9 @@ struct WiFiFingerprint {
const WiFiMeasurements& apMeasurements = it.second;
WiFiMeasurement avg = apMeasurements.entries.front(); // average starts with a copy of the first entry (to get all data-fields beside the rssi)
for (int i = 1; i < (int)apMeasurements.entries.size(); ++i) { // sum up all other entries [1:end]
avg.rssi += apMeasurements.entries[i].rssi;
avg.setRssi(avg.getRSSI() + apMeasurements.entries[i].getRSSI());
}
avg.rssi /= apMeasurements.entries.size();
avg.setRssi(avg.getRSSI() / apMeasurements.entries.size());
res.entries.push_back(avg); // add to output
}
@@ -57,12 +59,21 @@ struct WiFiFingerprint {
}
/** get all measurements for the given MAC */
std::vector<WiFiMeasurement> getAllForMAC(const MACAddress& mac) const {
std::vector<WiFiMeasurement> res;
for (const WiFiMeasurement& m : measurements.entries) {
if (m.getAP().getMAC() == mac) {res.push_back(m);}
}
return res;
}
/** serialize */
void write(std::ostream& out) const {
out << "pos: " << pos_m.x << " " << pos_m.y << " " << pos_m.z << "\n";
out << "num: " << measurements.entries.size() << "\n";
for (const WiFiMeasurement& wm : measurements.entries) {
out << wm.getTimestamp().ms() << " " << wm.ap.getMAC().asString() << " " << wm.getRSSI() << "\n";
out << wm.getTimestamp().ms() << " " << wm.getAP().getMAC().asString() << " " << wm.getRSSI() << "\n";
}
}

View File

@@ -0,0 +1,140 @@
#ifndef WIFIFINGERPRINTS_H
#define WIFIFINGERPRINTS_H
#include <fstream>
#include "WiFiFingerprint.h"
#include <iostream>
/**
* helper class to load and save fingerprints.
* fingerprints are wifi-measurements given at some known location
* those can be used to e.g. optimize access-point models etc.
*/
class WiFiFingerprints {
private:
// /** the file to save the calibration model to */
// std::string file;
/** all fingerprints (position -> measurements) within the model */
std::vector<WiFiFingerprint> fingerprints;
public:
/** empty ctor */
WiFiFingerprints() {
}
/** ctor from file */
WiFiFingerprints(const std::string& file) {
load(file);
}
const std::vector<WiFiFingerprint>& getFingerprints() const {
return fingerprints;
}
std::vector<WiFiFingerprint>& getFingerprints() {
return fingerprints;
}
/** attach the given fingerprint */
void add(const WiFiFingerprint& fp) {
fingerprints.push_back(fp);
}
/** get all fingerprints that measured exactly the given mac [no VAP grouping] */
const std::vector<WiFiFingerprint> getFingerprintsFor(const MACAddress& mac) const {
std::vector<WiFiFingerprint> res;
// process each fingerprint location
for (const WiFiFingerprint& _fp : fingerprints) {
// start with an empty copy
WiFiFingerprint fp = _fp; fp.measurements.entries.clear();
// only add the measurements that belong to the requested mac
for (const WiFiMeasurement& _m : _fp.measurements.entries) {
if (_m.getAP().getMAC() == mac) {
fp.measurements.entries.push_back(_m);
}
}
if (fp.measurements.entries.size() > 0) { // got some measurements for this AP?
res.push_back(fp);
}
}
return res;
}
/** deserialize the model */
void load(const std::string& file) {
// open and check
std::ifstream inp(file.c_str());
if (inp.bad() || inp.eof() || ! inp.is_open()) { return; }
// read all entries
while (!inp.eof()) {
// each section starts with [fingerprint]
std::string section;
inp >> section;
if (inp.eof()) {break;}
if (section != "[fingerprint]") {throw Exception("error!");}
// deserialize it
WiFiFingerprint wfp;
wfp.read(inp);
if (wfp.measurements.entries.empty()) {continue;}
fingerprints.push_back(wfp);
}
inp.close();
}
/** serialize the model */
void save(const std::string& file) {
// open and check
std::ofstream out(file.c_str());
if (out.bad()) {throw Exception("error while opening " + file + " for write");}
// write all entries
for (const WiFiFingerprint& wfp : fingerprints) {
out << "[fingerprint]\n";
wfp.write(out);
}
// done
out.close();
}
/** get the fingerprint for the given location. if no fingerprint exists, an empty one is created! */
WiFiFingerprint& getFingerprint(const Point3 pos_m) {
// try to find an existing one
for (WiFiFingerprint& wfp : fingerprints) {
// get within range of floating-point rounding issues
if (wfp.pos_m.getDistance(pos_m) < 0.01) {return wfp;}
}
// create a new one and return its reference
WiFiFingerprint wfp(pos_m);
fingerprints.push_back(wfp);
return fingerprints.back();
}
};
#endif // WIFIFINGERPRINTS_H

View File

@@ -1,247 +1,68 @@
#ifndef OPTIMIZER_H
#define OPTIMIZER_H
#include "../../../floorplan/v2/Floorplan.h"
#include "../../../floorplan/v2/FloorplanHelper.h"
#ifndef WIFIOPTIMIZER_H
#define WIFIOPTIMIZER_H
#include "WiFiFingerprints.h"
#include "WiFiOptimizerStructs.h"
#include "../VAPGrouper.h"
#include "../../../geo/BBox3.h"
#include "../../../misc/Debug.h"
#include "WiFiFingerprint.h"
#include "../model/WiFiModel.h"
#include "../model/WiFiModelLogDistCeiling.h"
#include <unordered_map>
#include <KLib/math/optimization/NumOptAlgoDownhillSimplex.h>
#include <KLib/math/optimization/NumOptAlgoGenetic.h>
#include <KLib/math/optimization/NumOptAlgoRangeRandom.h>
namespace WiFiOptimizer {
#include <string>
#include <sstream>
/** base-class for all WiFiOptimizers */
class Base {
struct WiFiOptimizer {
protected:
private:
/** each MAC-Adress has several position->rssi entries */
std::unordered_map<MACAddress, std::vector<RSSIatPosition>> apMap;
/** combine one RSSI measurement with the position the signal was measured at */
struct RSSIatPosition {
/** how to handle virtual access points [group, not-group, ..] */
const VAPGrouper vg;
/** real-world position (in meter) */
const Point3 pos_m;
/** measured signal strength (for one AP) */
const float rssi;
public:
/** ctor */
RSSIatPosition(const Point3 pos_m, const float rssi) : pos_m(pos_m), rssi(rssi) {;}
Base(const VAPGrouper vg) : vg(vg) {;}
};
public:
struct APParams {
float x;
float y;
float z;
float txp;
float exp;
float waf;
Point3 getPos() const {return Point3(x,y,z);}
APParams() {;}
APParams(float x, float y, float z, float txp, float exp, float waf) : x(x), y(y), z(z), txp(txp), exp(exp), waf(waf) {;}
std::string asString() {
std::stringstream ss;
ss << "Pos:" << getPos().asString() << " TXP:" << txp << " EXP:" << exp << " WAF:" << waf;
return ss.str();
}
};
/** add MAC-info to params */
struct APParamsMAC {
MACAddress mac;
APParams params;
APParamsMAC(const MACAddress mac, const APParams& params) : mac(mac), params(params) {;}
};
private:
Floorplan::IndoorMap* map;
const VAPGrouper vg;
/** each MAC-Adress has several position->rssi entries */
std::unordered_map<MACAddress, std::vector<RSSIatPosition>> apMap;
const char* name = "WiFiOptimizer";
public:
/** ctor */
WiFiOptimizer(Floorplan::IndoorMap* map, const VAPGrouper& vg) : map(map), vg(vg) {
;
}
/** add a new fingerprint to the optimizers data-source */
void addFingerprint(const WiFiFingerprint& fp) {
// group the fingerprint's measurements by VAP (if configured)
const WiFiMeasurements measurements = vg.group(fp.measurements);
// add each available AP to its slot (lookup map)
for (const WiFiMeasurement& m : measurements.entries) {
const RSSIatPosition rap(fp.pos_m, m.rssi);
apMap[m.getAP().getMAC()].push_back(rap);
/** get a list of all to-be-optimized access-points (given by their mac-address) */
virtual std::vector<MACAddress> getAllMACs() const {
std::vector<MACAddress> res;
for (const auto& it : apMap) {res.push_back(it.first);}
return res;
}
}
/** get a list of all to-be-optimized access-points (given by their mac-address) */
std::vector<MACAddress> getAllMACs() const {
std::vector<MACAddress> res;
for (const auto& it : apMap) {res.push_back(it.first);}
return res;
}
/** optimize all known APs */
std::vector<APParamsMAC> optimizeAll() const {
// sanity chekc
Assert::isFalse(getAllMACs().empty(), "no APs found for optimization!");
float errSum = 0;
std::vector<APParamsMAC> res;
for (const MACAddress& mac : getAllMACs()) {
float err;
const APParams params = optimize(mac, err);
res.push_back(APParamsMAC(mac, params));
errSum += err;
/** get all [VAPGrouped, Averaged] fingerprints for the given mac */
virtual const std::vector<RSSIatPosition>& getFingerprintsFor(const MACAddress& mac) {
const auto& it = apMap.find(mac);
if (it == apMap.end()) {throw Exception("mac not found: " + mac.asString());}
return it->second;
}
const float avgErr = errSum / getAllMACs().size();
Log::add(name, "average AP error is: " + std::to_string(avgErr) + " dB");
/** add a new fingerprint to the optimizer as data-source */
virtual void addFingerprint(const WiFiFingerprint& fp) {
return res;
}
/** optimize the given AP */
APParams optimize(const MACAddress& mac, float& errResult) const {
// starting parameters do not matter for the current optimizer!
APParams params(0,0,0, -40, 2.5, -4.0);
constexpr float hugeError = 1e10;
// get all position->rssi measurements for this AP to compare them with the corresponding model estimations
const std::vector<RSSIatPosition>& entries = apMap.find(mac)->second;
// signal-strength-prediction-model...
WiFiModelLogDistCeiling model(map);
auto func = [&] (const float* data) {
const APParams* params = (APParams*) data;
// some sanity checks
if (params->waf > 0) {return hugeError;}
if (params->txp < -50) {return hugeError;}
if (params->txp > -30) {return hugeError;}
if (params->exp > 4) {return hugeError;}
if (params->exp < 1) {return hugeError;}
// current position guess for the AP;
const Point3 apPos_m = params->getPos();
// add the AP [described by the current guess] to the signal-strength-prediction model
model.clear();
model.addAP(mac, WiFiModelLogDistCeiling::APEntry(apPos_m, params->txp, params->exp, params->waf));
float err = 0;
int cnt = 0;
// process each measurement
for (const RSSIatPosition& reading : entries) {
// get the model-estimation for the fingerprint's position
const float rssiModel = model.getRSSI(mac, reading.pos_m);
// difference between estimation and measurement
const float diff = std::abs(rssiModel - reading.rssi);
// adjust the error
err += diff*diff;
++cnt;
// max distance penality
// [unlikely to get a reading for this AP here!]
if (apPos_m.getDistance(reading.pos_m) > 150) {err += 999999;}
// group the fingerprint's measurements by VAP (if configured)
const WiFiMeasurements measurements = vg.group(fp.measurements);
// add each available AP to its slot (lookup map)
for (const WiFiMeasurement& m : measurements.entries) {
const RSSIatPosition rap(fp.pos_m, m.getRSSI());
apMap[m.getAP().getMAC()].push_back(rap);
}
err /= cnt;
err = std::sqrt(err);
}
if (params->txp < -50) {err += 999999;}
if (params->txp > -35) {err += 999999;}
/** add new fingerprints to the optimizer as data-source */
virtual void addFingerprints(const WiFiFingerprints& fps) {
for (const WiFiFingerprint& fp : fps.getFingerprints()) {
addFingerprint(fp);
}
}
if (params->exp > 3.5) {err += 999999;}
if (params->exp < 1.0) {err += 999999;}
return err;
};
};
//
const BBox3 mapBBox = FloorplanHelper::getBBox(map);
}
using LeOpt = K::NumOptAlgoRangeRandom<float>;
const std::vector<LeOpt::MinMax> valRegion = {
LeOpt::MinMax(mapBBox.getMin().x - 20, mapBBox.getMax().x + 20), // x
LeOpt::MinMax(mapBBox.getMin().y - 20, mapBBox.getMax().y + 20), // y
LeOpt::MinMax(mapBBox.getMin().z - 5, mapBBox.getMax().z + 5), // z
LeOpt::MinMax(-50,-30), // txp
LeOpt::MinMax(1,3), // exp
LeOpt::MinMax(-10,-4), // waf
};
// log
Log::add(name, "optimizing parameters for AP " + mac.asString() + " by using " + std::to_string(entries.size()) + " fingerprints", false);
Log::tick();
LeOpt opt(valRegion);
opt.setPopulationSize(500); // USE MORE FOR PRODUCTION
opt.setNumIerations(150);
opt.calculateOptimum(func, (float*) &params);
// using LeOpt = K::NumOptAlgoGenetic<float>;
// LeOpt opt(6);
// opt.setPopulationSize(750);
// opt.setMaxIterations(50);
// opt.setElitism(0.05f);
// opt.setMutation(0.75f);
// //opt.setValRange({0.5, 0.5, 0.5, 0.1, 0.1, 0.1});
// opt.setValRegion(valRegion);
// K::NumOptAlgoDownhillSimplex<float, 6> opt;
// opt.setMaxIterations(100);
// opt.setNumRestarts(10);
opt.calculateOptimum(func, (float*) &params);
errResult = func((float*)&params);
Log::tock();
Log::add(name, mac.asString() + ": " + params.asString() + " @ " + std::to_string(errResult) +" dB err");
return params;
}
};
#endif // OPTIMIZER_H
#endif // WIFIOPTIMIZER_H

View File

@@ -0,0 +1,345 @@
#ifndef WIFI_OPTIMIZER_LOG_DIST_CEILING_H
#define WIFI_OPTIMIZER_LOG_DIST_CEILING_H
#include "../../../floorplan/v2/Floorplan.h"
#include "../../../floorplan/v2/FloorplanHelper.h"
#include "../../../geo/BBox3.h"
#include "../../../misc/Debug.h"
#include "WiFiFingerprint.h"
#include "WiFiFingerprints.h"
#include "../model/WiFiModel.h"
#include "../model/WiFiModelLogDistCeiling.h"
#include <KLib/math/optimization/NumOptAlgoDownhillSimplex.h>
#include <KLib/math/optimization/NumOptAlgoGenetic.h>
#include <KLib/math/optimization/NumOptAlgoRangeRandom.h>
#include <string>
#include <sstream>
#include "WiFiOptimizer.h"
#include "WiFiOptimizerStructs.h"
#include <functional>
namespace WiFiOptimizer {
/**
* optimize access-point parameters,
* given several fingerprints using the log-dist-ceiling model
*/
struct LogDistCeiling : public Base {
public:
enum class Mode {
FAST,
MEDIUM,
QUALITY,
};
/**
* resulting optimization stats for one AP
*/
struct Stats {
/** average model<->scan error after optimzing */
float error_db;
/** number of fingerprints [= locations] that were used for optimzing */
int usedFingerprins;
/** resulting model<->scan error after optimzing for each individual fingerprints [= location] */
std::vector<ErrorAtPosition> errors;
/** get the location where the model estimation reaches the highest negative value [model estimation too low] */
ErrorAtPosition getEstErrorMaxNeg() const {
auto cmpErrAtPos = [] (const ErrorAtPosition& a, const ErrorAtPosition& b) {return a.getError_db() < b.getError_db();};
return *std::min_element(errors.begin(), errors.end(), cmpErrAtPos);
}
/** get the location where the model estimation reaches the highest positive value [model estimation too high] */
ErrorAtPosition getEstErrorMaxPos() const {
auto cmpErrAtPos = [] (const ErrorAtPosition& a, const ErrorAtPosition& b) {return a.getError_db() < b.getError_db();};
return *std::max_element(errors.begin(), errors.end(), cmpErrAtPos);
}
};
/** parameters for one AP when using the LogDistCeiling model */
struct APParams {
float x;
float y;
float z;
float txp;
float exp;
float waf;
Point3 getPos() const {return Point3(x,y,z);}
/** ctor */
APParams() {;}
/** ctor */
APParams(float x, float y, float z, float txp, float exp, float waf) : x(x), y(y), z(z), txp(txp), exp(exp), waf(waf) {;}
std::string asString() const {
std::stringstream ss;
ss << "Pos:" << getPos().asString() << " TXP:" << txp << " EXP:" << exp << " WAF:" << waf;
return ss.str();
}
/** we add some constraints to the parameter range */
bool outOfRange() const {
return (waf > 0) ||
(txp < -50) ||
(txp > -30) ||
(exp > 4) ||
(exp < 1);
}
};
/** add MAC-info to params */
struct APParamsMAC {
MACAddress mac;
APParams params;
APParamsMAC(const MACAddress mac, const APParams& params) : mac(mac), params(params) {;}
};
class APParamsList {
std::vector<APParamsMAC> lst;
public:
/** ctor */
APParamsList(const std::vector<APParamsMAC>& lst) : lst(lst) {
}
/** get the list */
const std::vector<APParamsMAC>& get() const {
return lst;
}
/** get params for the given mac [if known, otherwise nullptr] */
const APParamsMAC* get (const MACAddress& mac) const {
for (const APParamsMAC& ap : lst) {
if (ap.mac == mac) {return &ap;}
}
return nullptr;
}
};
using APFilter = std::function<bool(const int numFingerprints, const MACAddress& mac)>;
const APFilter NONE = [] (const int numFingerprints, const MACAddress& mac) {
(void) numFingerprints; (void) mac;
return false;
};
const APFilter MIN_5_FPS = [] (const int numFingerprints, const MACAddress& mac) {
(void) mac;
return numFingerprints < 5;
};
private:
Floorplan::IndoorMap* map;
Mode mode = Mode::QUALITY;
const char* name = "WiFiOptLDC";
public:
/** ctor */
LogDistCeiling(Floorplan::IndoorMap* map, const VAPGrouper& vg, const Mode mode = Mode::QUALITY) : Base(vg), map(map), mode(mode) {
;
}
/** ctor */
LogDistCeiling(Floorplan::IndoorMap* map, const VAPGrouper& vg, const WiFiFingerprints& fps, const Mode mode = Mode::QUALITY) : Base(vg), map(map), mode(mode) {
addFingerprints(fps);
}
/** optimize all known APs */
APParamsList optimizeAll(APFilter filter) const {
// sanity check
Assert::isFalse(getAllMACs().empty(), "no APs found for optimization! call addFingerprint() first!");
float errSum = 0; int errCnt = 0;
std::vector<APParamsMAC> res;
for (const MACAddress& mac : getAllMACs()) {
Stats stats;
const APParams params = optimize(mac, stats);
if (!filter(stats.usedFingerprins, mac)) {
res.push_back(APParamsMAC(mac, params));
errSum += stats.error_db;
++errCnt;
} else {
std::cout << "ignored due to filter!" << std::endl;
}
}
const float avgErr = errSum / errCnt;
Log::add(name, "optimized APs: " + std::to_string(errCnt));
Log::add(name, "average AP error is: " + std::to_string(avgErr) + " dB");
// done
return APParamsList(res);
}
/** optimize the given AP */
APParams optimize(const MACAddress& mac, Stats& res) const {
// starting parameters do not matter for the current optimizer!
APParams params(0,0,0, -40, 2.5, -4.0);
// get all position->rssi measurements for this AP to compare them with the corresponding model estimations
const std::vector<RSSIatPosition>& entries = apMap.find(mac)->second;
// log
Log::add(name, "optimizing parameters for AP " + mac.asString() + " by using " + std::to_string(entries.size()) + " fingerprints", false);
Log::tick();
// get the map's size
const BBox3 mapBBox = FloorplanHelper::getBBox(map);
using LeOpt = K::NumOptAlgoRangeRandom<float>;
const std::vector<LeOpt::MinMax> valRegion = {
LeOpt::MinMax(mapBBox.getMin().x - 20, mapBBox.getMax().x + 20), // x
LeOpt::MinMax(mapBBox.getMin().y - 20, mapBBox.getMax().y + 20), // y
LeOpt::MinMax(mapBBox.getMin().z - 5, mapBBox.getMax().z + 5), // z
LeOpt::MinMax(-50, -30), // txp
LeOpt::MinMax(1, 4), // exp
LeOpt::MinMax(-15, -0), // waf
};
LeOpt opt(valRegion);
switch(mode) {
case Mode::FAST:
opt.setPopulationSize(100);
opt.setNumIerations(50);
break;
case Mode::MEDIUM:
opt.setPopulationSize(200);
opt.setNumIerations(100);
break;
case Mode::QUALITY:
opt.setPopulationSize(500);
opt.setNumIerations(150);
break;
}
// error function
auto func = [&] (const float* params) {
return getErrorLogDistCeiling(mac, entries, params, nullptr);
};
opt.calculateOptimum(func, (float*) &params);
// using LeOpt = K::NumOptAlgoGenetic<float>;
// LeOpt opt(6);
// opt.setPopulationSize(750);
// opt.setMaxIterations(50);
// opt.setElitism(0.05f);
// opt.setMutation(0.75f);
// //opt.setValRange({0.5, 0.5, 0.5, 0.1, 0.1, 0.1});
// opt.setValRegion(valRegion);
// K::NumOptAlgoDownhillSimplex<float, 6> opt;
// opt.setMaxIterations(100);
// opt.setNumRestarts(10);
opt.calculateOptimum(func, (float*) &params);
res.error_db = getErrorLogDistCeiling(mac, entries, (float*)&params, &res);
res.usedFingerprins = entries.size();
Log::tock();
Log::add(name, mac.asString() + ": " + params.asString() + " @ " + std::to_string(res.error_db) +" dB err");
return params;
}
private:
float getErrorLogDistCeiling(const MACAddress& mac, const std::vector<RSSIatPosition>& entries, const float* data, Stats* stats = nullptr) const {
const APParams* params = (APParams*) data;
// some sanity checks
if (params->outOfRange()) {return 1e10;}
// current position guess for the AP;
const Point3 apPos_m = params->getPos();
// add the AP [described by the current guess] to the signal-strength-prediction model
// signal-strength-prediction-model...
WiFiModelLogDistCeiling model(map);
model.addAP(mac, WiFiModelLogDistCeiling::APEntry(apPos_m, params->txp, params->exp, params->waf));
float err = 0;
int cnt = 0;
// process each measurement
for (const RSSIatPosition& reading : entries) {
// get the model-estimation for the fingerprint's position
const float rssiModel = model.getRSSI(mac, reading.pos_m);
// difference between estimation and measurement
const float diff = std::abs(rssiModel - reading.rssi);
// add error to stats object?
if (stats) {
stats->errors.push_back(ErrorAtPosition(reading.pos_m, reading.rssi, rssiModel));
}
// adjust the error
err += std::pow(std::abs(diff), 2.0);
++cnt;
// max distance penality
// [unlikely to get a reading for this AP here!]
if (apPos_m.getDistance(reading.pos_m) > 150) {err += 999999;}
}
err /= cnt;
err = std::sqrt(err);
if (params->txp < -50) {err += 999999;}
if (params->txp > -35) {err += 999999;}
if (params->exp > 3.5) {err += 999999;}
if (params->exp < 1.0) {err += 999999;}
return err;
}
};
}
#endif // WIFI_OPTIMIZER_LOG_DIST_CEILING_H

View File

@@ -0,0 +1,55 @@
#ifndef WIFIOPTIMIZERSTRUCTS_H
#define WIFIOPTIMIZERSTRUCTS_H
#include "../../../geo/Point3.h"
namespace WiFiOptimizer {
/**
* one entry that is used during optimization:
* combine one RSSI measurement with the position the signal was measured at
*/
struct RSSIatPosition {
/** real-world position (in meter) */
const Point3 pos_m;
/** measured signal strength (for one AP) */
const float rssi;
/** ctor */
RSSIatPosition(const Point3 pos_m, const float rssi) : pos_m(pos_m), rssi(rssi) {;}
};
/**
* for statistics
* after optimiziaton
*
* denotes the difference [error] between one fingerprinted rssi
* at location (x,y,z) and the model estimation for this location
*/
struct ErrorAtPosition {
/** real-world position (in meter) */
const Point3 pos_m;
/** measured signal strength (for one AP) */
const float scan_rssi;
/** final model's prediction */
const float model_rssi;
/** ctor */
ErrorAtPosition(const Point3 pos_m, const float scan_rssi, const float model_rssi) : pos_m(pos_m), scan_rssi(scan_rssi), model_rssi(model_rssi) {;}
/** get the difference [error] between model-estimated-rssi and fingerprinted-rssi */
float getError_db() const {
return model_rssi - scan_rssi;
}
};
}
#endif // WIFIOPTIMIZERSTRUCTS_H