added stuff for bluetooth
worked on resampling methods
This commit is contained in:
@@ -134,8 +134,7 @@ namespace SMC {
|
||||
Assert::isNotNull(evaluation, "evaluation MUST not be null! call setEvaluation() first!");
|
||||
Assert::isNotNull(estimation, "estimation MUST not be null! call setEstimation() first!");
|
||||
|
||||
// if the number of efficient particles is too low, perform resampling
|
||||
if (lastNEff < particles.size() * nEffThresholdPercent) {resampler->resample(particles); }
|
||||
|
||||
|
||||
// perform the transition step
|
||||
transition->transition(particles, control);
|
||||
@@ -143,6 +142,9 @@ namespace SMC {
|
||||
// perform the evaluation step and calculate the sum of all particle weights
|
||||
evaluation->evaluation(particles, observation);
|
||||
|
||||
// perform an additional step to prevent impoverishment of the particles
|
||||
//enrichment->enrichment(particles, observation);
|
||||
|
||||
// normalize the particle weights and thereby calculate N_eff
|
||||
lastNEff = normalize();
|
||||
|
||||
@@ -151,6 +153,9 @@ namespace SMC {
|
||||
// estimate the current state
|
||||
const State est = estimation->estimate(particles);
|
||||
|
||||
// if the number of efficient particles is too low, perform resampling
|
||||
if (lastNEff < particles.size() * nEffThresholdPercent) {resampler->resample(particles); }
|
||||
|
||||
// done
|
||||
return est;
|
||||
|
||||
|
||||
@@ -16,225 +16,225 @@
|
||||
|
||||
namespace SMC {
|
||||
|
||||
/**
|
||||
* the main-class for the particle filter
|
||||
* @param State the (user-defined) state for each particle
|
||||
* @param Observation the observation (sensor) data
|
||||
*/
|
||||
template <typename State, typename Control, typename Observation>
|
||||
class ParticleFilterMixing {
|
||||
/**
|
||||
* the main-class for the particle filter
|
||||
* @param State the (user-defined) state for each particle
|
||||
* @param Observation the observation (sensor) data
|
||||
*/
|
||||
template <typename State, typename Control, typename Observation>
|
||||
class ParticleFilterMixing {
|
||||
|
||||
private:
|
||||
private:
|
||||
|
||||
/** all used particles */
|
||||
std::vector<Particle<State>> particles;
|
||||
/** all used particles */
|
||||
std::vector<Particle<State>> particles;
|
||||
|
||||
/** the current calculated estimation */
|
||||
State estimation;
|
||||
/** the current calculated estimation */
|
||||
State estimation;
|
||||
|
||||
/** the resampler to use */
|
||||
std::shared_ptr<ParticleFilterResampling<State>> resampler;
|
||||
/** the resampler to use */
|
||||
std::shared_ptr<ParticleFilterResampling<State>> resampler;
|
||||
|
||||
/** the estimation function to use */
|
||||
std::shared_ptr<ParticleFilterEstimation<State>> estimator;
|
||||
/** the estimation function to use */
|
||||
std::shared_ptr<ParticleFilterEstimation<State>> estimator;
|
||||
|
||||
/** the transition function to use */
|
||||
std::shared_ptr<ParticleFilterTransition<State, Control>> transition;
|
||||
/** the transition function to use */
|
||||
std::shared_ptr<ParticleFilterTransition<State, Control>> transition;
|
||||
|
||||
/** the evaluation function to use */
|
||||
std::shared_ptr<ParticleFilterEvaluation<State, Observation>> evaluation;
|
||||
/** the evaluation function to use */
|
||||
std::shared_ptr<ParticleFilterEvaluation<State, Observation>> evaluation;
|
||||
|
||||
/** the initialization function to use */
|
||||
std::shared_ptr<ParticleFilterInitializer<State>> initializer;
|
||||
/** the initialization function to use */
|
||||
std::shared_ptr<ParticleFilterInitializer<State>> initializer;
|
||||
|
||||
/** the percentage-of-efficient-particles-threshold for resampling */
|
||||
double nEffThresholdPercent = 0.25;
|
||||
/** the percentage-of-efficient-particles-threshold for resampling */
|
||||
double nEffThresholdPercent = 0.25;
|
||||
|
||||
/** the current sum of all weights NOT normalized*/
|
||||
double weightSum = 1.0;
|
||||
/** the current sum of all weights NOT normalized*/
|
||||
double weightSum = 1.0;
|
||||
|
||||
/** the predicted mode probability P(m_t|Z_t-1) */
|
||||
double predictedModeProbability = 1.0;
|
||||
/** the predicted mode probability P(m_t|Z_t-1) */
|
||||
double predictedModeProbability = 1.0;
|
||||
|
||||
/** the posterior probability of the mode p(m_t | Z_t)*/
|
||||
double modePosteriorProbability = 1.0;
|
||||
/** the posterior probability of the mode p(m_t | Z_t)*/
|
||||
double modePosteriorProbability = 1.0;
|
||||
|
||||
/** the transition mode probability P(m_t-1 | m_t, Z_t-1)*/
|
||||
double transitionModeProbability = 1.0;
|
||||
/** the transition mode probability P(m_t-1 | m_t, Z_t-1)*/
|
||||
double transitionModeProbability = 1.0;
|
||||
|
||||
public:
|
||||
public:
|
||||
|
||||
/** ctor
|
||||
* NOTE: The modePosteriorProbability needs the be normalized depending on the number of filters within the IMMPF!!
|
||||
*/
|
||||
ParticleFilterMixing(const uint32_t numParticles, std::shared_ptr<ParticleFilterInitializer<State>> initializer, double modePosteriorProbability) {
|
||||
this->modePosteriorProbability = modePosteriorProbability;
|
||||
/** ctor
|
||||
* NOTE: The modePosteriorProbability needs the be normalized depending on the number of filters within the IMMPF!!
|
||||
*/
|
||||
ParticleFilterMixing(const uint32_t numParticles, std::shared_ptr<ParticleFilterInitializer<State>> initializer, double modePosteriorProbability) {
|
||||
this->modePosteriorProbability = modePosteriorProbability;
|
||||
|
||||
particles.resize(numParticles);
|
||||
setInitializier(std::move(initializer));
|
||||
init();
|
||||
}
|
||||
particles.resize(numParticles);
|
||||
setInitializier(std::move(initializer));
|
||||
init();
|
||||
}
|
||||
|
||||
/** dtor */
|
||||
~ParticleFilterMixing() {
|
||||
;
|
||||
}
|
||||
/** dtor */
|
||||
~ParticleFilterMixing() {
|
||||
;
|
||||
}
|
||||
|
||||
/** access to all particles */
|
||||
const std::vector<Particle<State>>& getParticles() const {
|
||||
return this->particles;
|
||||
}
|
||||
/** access to all particles */
|
||||
const std::vector<Particle<State>>& getParticles() const {
|
||||
return this->particles;
|
||||
}
|
||||
|
||||
void setParticles(const std::vector<Particle<State>>& newParticles){
|
||||
this->particles = newParticles;
|
||||
}
|
||||
void setParticles(const std::vector<Particle<State>>& newParticles){
|
||||
this->particles = newParticles;
|
||||
}
|
||||
|
||||
/** get the current estimation */
|
||||
const State getEstimation() const {
|
||||
return estimation;
|
||||
}
|
||||
/** get the current estimation */
|
||||
const State getEstimation() const {
|
||||
return estimation;
|
||||
}
|
||||
|
||||
/** initialize/re-start the particle filter */
|
||||
void init() {
|
||||
Assert::isNotNull(initializer, "initializer MUST not be null! call setInitializer() first!");
|
||||
initializer->initialize(particles);
|
||||
}
|
||||
/** initialize/re-start the particle filter */
|
||||
void init() {
|
||||
Assert::isNotNull(initializer, "initializer MUST not be null! call setInitializer() first!");
|
||||
initializer->initialize(particles);
|
||||
}
|
||||
|
||||
|
||||
/** set the resampling method to use */
|
||||
void setResampling(std::shared_ptr<ParticleFilterResampling<State>> resampler) {
|
||||
Assert::isNotNull(resampler, "setResampling() MUST not be called with a nullptr!");
|
||||
this->resampler = std::move(resampler);
|
||||
}
|
||||
/** set the resampling method to use */
|
||||
void setResampling(std::shared_ptr<ParticleFilterResampling<State>> resampler) {
|
||||
Assert::isNotNull(resampler, "setResampling() MUST not be called with a nullptr!");
|
||||
this->resampler = std::move(resampler);
|
||||
}
|
||||
|
||||
/** set the estimation method to use */
|
||||
void setEstimator(std::shared_ptr<ParticleFilterEstimation<State>> estimator) {
|
||||
Assert::isNotNull(estimator, "setEstimation() MUST not be called with a nullptr!");
|
||||
this->estimator = std::move(estimator);
|
||||
}
|
||||
/** set the estimation method to use */
|
||||
void setEstimator(std::shared_ptr<ParticleFilterEstimation<State>> estimator) {
|
||||
Assert::isNotNull(estimator, "setEstimation() MUST not be called with a nullptr!");
|
||||
this->estimator = std::move(estimator);
|
||||
}
|
||||
|
||||
/** set the transition method to use */
|
||||
void setTransition(std::shared_ptr<ParticleFilterTransition<State, Control>> transition) {
|
||||
Assert::isNotNull(transition, "setTransition() MUST not be called with a nullptr!");
|
||||
this->transition = std::move(transition);
|
||||
}
|
||||
/** set the transition method to use */
|
||||
void setTransition(std::shared_ptr<ParticleFilterTransition<State, Control>> transition) {
|
||||
Assert::isNotNull(transition, "setTransition() MUST not be called with a nullptr!");
|
||||
this->transition = std::move(transition);
|
||||
}
|
||||
|
||||
/** get the used transition method */
|
||||
ParticleFilterTransition<State, Control>* getTransition() {
|
||||
return this->transition.get();
|
||||
}
|
||||
/** get the used transition method */
|
||||
ParticleFilterTransition<State, Control>* getTransition() {
|
||||
return this->transition.get();
|
||||
}
|
||||
|
||||
/** set the evaluation method to use */
|
||||
void setEvaluation(std::shared_ptr<ParticleFilterEvaluation<State, Observation>> evaluation) {
|
||||
Assert::isNotNull(evaluation, "setEvaluation() MUST not be called with a nullptr!");
|
||||
this->evaluation = std::move(evaluation);
|
||||
}
|
||||
/** set the evaluation method to use */
|
||||
void setEvaluation(std::shared_ptr<ParticleFilterEvaluation<State, Observation>> evaluation) {
|
||||
Assert::isNotNull(evaluation, "setEvaluation() MUST not be called with a nullptr!");
|
||||
this->evaluation = std::move(evaluation);
|
||||
}
|
||||
|
||||
/** set the initialization method to use */
|
||||
void setInitializier(std::shared_ptr<ParticleFilterInitializer<State>> initializer) {
|
||||
Assert::isNotNull(initializer, "setInitializer() MUST not be called with a nullptr!");
|
||||
this->initializer = std::move(initializer);
|
||||
}
|
||||
/** set the initialization method to use */
|
||||
void setInitializier(std::shared_ptr<ParticleFilterInitializer<State>> initializer) {
|
||||
Assert::isNotNull(initializer, "setInitializer() MUST not be called with a nullptr!");
|
||||
this->initializer = std::move(initializer);
|
||||
}
|
||||
|
||||
/** set the resampling threshold as the percentage of efficient particles */
|
||||
void setNEffThreshold(const double thresholdPercent) {
|
||||
this->nEffThresholdPercent = thresholdPercent;
|
||||
}
|
||||
/** set the resampling threshold as the percentage of efficient particles */
|
||||
void setNEffThreshold(const double thresholdPercent) {
|
||||
this->nEffThresholdPercent = thresholdPercent;
|
||||
}
|
||||
|
||||
/** get the unormalized weight sum of all particles */
|
||||
double getWeightSum() const
|
||||
{
|
||||
return this->weightSum;
|
||||
}
|
||||
/** get the unormalized weight sum of all particles */
|
||||
double getWeightSum() const
|
||||
{
|
||||
return this->weightSum;
|
||||
}
|
||||
|
||||
/** get the predicted mode probability P(m_t|Z_t-1)*/
|
||||
double getPredictedModeProbability() const
|
||||
{
|
||||
return this->predictedModeProbability;
|
||||
}
|
||||
/** get the predicted mode probability P(m_t|Z_t-1)*/
|
||||
double getPredictedModeProbability() const
|
||||
{
|
||||
return this->predictedModeProbability;
|
||||
}
|
||||
|
||||
/** set the predicted mode probability P(m_t|Z_t-1)*/
|
||||
void setPredictedModeProbability(const double val) {
|
||||
this->predictedModeProbability = val;
|
||||
}
|
||||
/** set the predicted mode probability P(m_t|Z_t-1)*/
|
||||
void setPredictedModeProbability(const double val) {
|
||||
this->predictedModeProbability = val;
|
||||
}
|
||||
|
||||
/** get the posterior mode probability P(m_t|Z_t)*/
|
||||
double getModePosteriorProbability() const
|
||||
{
|
||||
return this->modePosteriorProbability;
|
||||
}
|
||||
/** get the posterior mode probability P(m_t|Z_t)*/
|
||||
double getModePosteriorProbability() const
|
||||
{
|
||||
return this->modePosteriorProbability;
|
||||
}
|
||||
|
||||
/** set the posterior mode probability P(m_t|Z_t)*/
|
||||
void setModePosteriorProbability(const double likelihoodSum) {
|
||||
/** set the posterior mode probability P(m_t|Z_t)*/
|
||||
void setModePosteriorProbability(const double likelihoodSum) {
|
||||
|
||||
Assert::isNotNull(likelihoodSum, "likelihoodsum is zero.. thats not possible");
|
||||
Assert::isNotNull(this->weightSum, "weightSum is zero.. thats not possible");
|
||||
//Assert::isNotNull(this->predictedModeProbability, "predictedModeProbability is zero.. thats not possible");
|
||||
Assert::isNotNull(likelihoodSum, "likelihoodsum is zero.. thats not possible");
|
||||
Assert::isNotNull(this->weightSum, "weightSum is zero.. thats not possible");
|
||||
//Assert::isNotNull(this->predictedModeProbability, "predictedModeProbability is zero.. thats not possible");
|
||||
|
||||
this->modePosteriorProbability = (this->weightSum * this->predictedModeProbability) / likelihoodSum;
|
||||
this->modePosteriorProbability = (this->weightSum * this->predictedModeProbability) / likelihoodSum;
|
||||
|
||||
//Assert::isNotNull(this->modePosteriorProbability, "modePosteriorProbability is zero.. thats not possible");
|
||||
}
|
||||
//Assert::isNotNull(this->modePosteriorProbability, "modePosteriorProbability is zero.. thats not possible");
|
||||
}
|
||||
|
||||
/** get the transition mode probability P(m_t|Z_t)
|
||||
* NOTE: Dont use this value! It is only needed for more beatiful mixed sampling!
|
||||
*/
|
||||
double getTransitionModeProbability() const
|
||||
{
|
||||
return this->transitionModeProbability;
|
||||
}
|
||||
/** get the transition mode probability P(m_t|Z_t)
|
||||
* NOTE: Dont use this value! It is only needed for more beautiful mixed sampling!
|
||||
*/
|
||||
double getTransitionModeProbability() const
|
||||
{
|
||||
return this->transitionModeProbability;
|
||||
}
|
||||
|
||||
/** set the transition mode probability P(m_t|Z_t)*/
|
||||
void setTransitionModeProbability(const double val) {
|
||||
this->transitionModeProbability = val;
|
||||
}
|
||||
/** set the transition mode probability P(m_t|Z_t)*/
|
||||
void setTransitionModeProbability(const double val) {
|
||||
this->transitionModeProbability = val;
|
||||
}
|
||||
|
||||
/** perform resampling -> transition -> evaluation -> estimation */
|
||||
void update(const Control* control, const Observation& observation) {
|
||||
/** perform resampling -> transition -> evaluation -> estimation */
|
||||
void update(const Control* control, const Observation& observation) {
|
||||
|
||||
// sanity checks (if enabled)
|
||||
Assert::isNotNull(resampler, "resampler MUST not be null! call setResampler() first!");
|
||||
Assert::isNotNull(transition, "transition MUST not be null! call setTransition() first!");
|
||||
Assert::isNotNull(evaluation, "evaluation MUST not be null! call setEvaluation() first!");
|
||||
Assert::isNotNull(estimator, "estimation MUST not be null! call setEstimation() first!");
|
||||
// sanity checks (if enabled)
|
||||
Assert::isNotNull(resampler, "resampler MUST not be null! call setResampler() first!");
|
||||
Assert::isNotNull(transition, "transition MUST not be null! call setTransition() first!");
|
||||
Assert::isNotNull(evaluation, "evaluation MUST not be null! call setEvaluation() first!");
|
||||
Assert::isNotNull(estimator, "estimation MUST not be null! call setEstimation() first!");
|
||||
|
||||
// perform the transition step
|
||||
transition->transition(particles, control);
|
||||
// perform the transition step
|
||||
transition->transition(particles, control);
|
||||
|
||||
// perform the evaluation step and calculate the sum of all particle weights
|
||||
this->weightSum = evaluation->evaluation(particles, observation);
|
||||
// perform the evaluation step and calculate the sum of all particle weights
|
||||
this->weightSum = evaluation->evaluation(particles, observation);
|
||||
|
||||
// normalize the particle weights and thereby calculate N_eff
|
||||
const double neff = normalize(weightSum);
|
||||
// normalize the particle weights and thereby calculate N_eff
|
||||
const double neff = normalize(weightSum);
|
||||
|
||||
// estimate the current state
|
||||
this->estimation = estimator->estimate(particles);
|
||||
// estimate the current state
|
||||
this->estimation = estimator->estimate(particles);
|
||||
|
||||
// if the number of efficient particles is too low, perform resampling
|
||||
if (neff < particles.size() * nEffThresholdPercent) { resampler->resample(particles); }
|
||||
// if the number of efficient particles is too low, perform resampling
|
||||
if (neff < particles.size() * nEffThresholdPercent) { resampler->resample(particles); }
|
||||
|
||||
// done
|
||||
}
|
||||
// done
|
||||
}
|
||||
|
||||
private:
|
||||
private:
|
||||
|
||||
/** normalize the weight of all particles to one */
|
||||
double normalize(const double weightSum) {
|
||||
double sum = 0.0;
|
||||
for (auto& p : particles) {
|
||||
p.weight /= weightSum;
|
||||
sum += (p.weight * p.weight);
|
||||
}
|
||||
return 1.0 / sum;
|
||||
}
|
||||
/** normalize the weight of all particles to one */
|
||||
double normalize(const double weightSum) {
|
||||
double sum = 0.0;
|
||||
for (auto& p : particles) {
|
||||
p.weight /= weightSum;
|
||||
sum += (p.weight * p.weight);
|
||||
}
|
||||
return 1.0 / sum;
|
||||
}
|
||||
|
||||
/** calculate the number of efficient particles (N_eff) */
|
||||
double getNeff() const {
|
||||
double sum = 0.0;
|
||||
for (auto& p : particles) {sum += (p.weight * p.weight);}
|
||||
return 1.0 / sum;
|
||||
}
|
||||
};
|
||||
/** calculate the number of efficient particles (N_eff) */
|
||||
double getNeff() const {
|
||||
double sum = 0.0;
|
||||
for (auto& p : particles) {sum += (p.weight * p.weight);}
|
||||
return 1.0 / sum;
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#ifndef PARTICLEFILTERRESAMPLINGKDE_H
|
||||
#ifndef PARTICLEFILTERRESAMPLINGKDE_H
|
||||
#define PARTICLEFILTERRESAMPLINGKDE_H
|
||||
|
||||
#include <algorithm>
|
||||
@@ -19,103 +19,102 @@
|
||||
|
||||
namespace SMC {
|
||||
|
||||
/**
|
||||
* Resample based on rapid KDE
|
||||
*/
|
||||
template <typename State, typename Tria>
|
||||
class ParticleFilterResamplingKDE : public ParticleFilterResampling<State> {
|
||||
/**
|
||||
* Resample based on rapid KDE
|
||||
*/
|
||||
template <typename State, typename Tria>
|
||||
class ParticleFilterResamplingKDE : public ParticleFilterResampling<State> {
|
||||
|
||||
private:
|
||||
private:
|
||||
|
||||
/** this is a copy of the particle-set to draw from it */
|
||||
std::vector<Particle<State>> particlesCopy;
|
||||
/** this is a copy of the particle-set to draw from it */
|
||||
std::vector<Particle<State>> particlesCopy;
|
||||
|
||||
/** random number generator */
|
||||
std::minstd_rand gen;
|
||||
/** random number generator */
|
||||
std::minstd_rand gen;
|
||||
|
||||
/** boundingBox for the boxKDE */
|
||||
_BBox3<float> bb;
|
||||
/** boundingBox for the boxKDE */
|
||||
_BBox3<float> bb;
|
||||
|
||||
/** histogram/grid holding the particles*/
|
||||
std::unique_ptr<Grid3D<float>> grid;
|
||||
/** histogram/grid holding the particles*/
|
||||
std::unique_ptr<Grid3D<float>> grid;
|
||||
|
||||
/** bandwith for KDE */
|
||||
Point3 bandwith;
|
||||
/** bandwith for KDE */
|
||||
Point3 bandwith;
|
||||
|
||||
/** the current mesh */
|
||||
const NM::NavMesh<Tria>* mesh;
|
||||
/** the current mesh */
|
||||
const NM::NavMesh<Tria>* mesh;
|
||||
|
||||
public:
|
||||
public:
|
||||
|
||||
/** ctor */
|
||||
ParticleFilterResamplingKDE(const NM::NavMesh<Tria>* mesh, const Point3 gridsize_m, const Point3 bandwith) {
|
||||
/** ctor */
|
||||
ParticleFilterResamplingKDE(const NM::NavMesh<Tria>* mesh, const Point3 gridsize_m, const Point3 bandwith) {
|
||||
|
||||
this->mesh = mesh;
|
||||
this->bandwith = bandwith;
|
||||
this->bb = mesh->getBBox();
|
||||
this->bb.grow(10);
|
||||
this->mesh = mesh;
|
||||
this->bandwith = bandwith;
|
||||
this->bb = mesh->getBBox();//_BBox3<float>(mesh->getBBox().getMin() * 100.f, mesh->getBBox().getMax() * 100.f);
|
||||
this->bb.grow(10);
|
||||
|
||||
// Create histogram
|
||||
size_t nBinsX = (size_t)((this->bb.getMax().x - this->bb.getMin().x) / gridsize_m.x);
|
||||
size_t nBinsY = (size_t)((this->bb.getMax().y - this->bb.getMin().y) / gridsize_m.y);
|
||||
size_t nBinsZ = (size_t)((this->bb.getMax().z - this->bb.getMin().z) / gridsize_m.z);
|
||||
// Create histogram
|
||||
size_t nBinsX = (size_t)((this->bb.getMax().x - this->bb.getMin().x) / gridsize_m.x);
|
||||
size_t nBinsY = (size_t)((this->bb.getMax().y - this->bb.getMin().y) / gridsize_m.y);
|
||||
size_t nBinsZ = (size_t)((this->bb.getMax().z - this->bb.getMin().z) / gridsize_m.z);
|
||||
|
||||
this->grid = std::make_unique<Grid3D<float>>(bb, nBinsX, nBinsY, nBinsZ);
|
||||
//to centimeter
|
||||
//bb.add(bb.getMin() * 100.0f);
|
||||
//bb.add(bb.getMax() * 100.0f);
|
||||
|
||||
gen.seed(1234);
|
||||
}
|
||||
this->grid = std::make_unique<Grid3D<float>>(bb, nBinsX, nBinsY, nBinsZ);
|
||||
|
||||
void resample(std::vector<Particle<State>>& particles) override {
|
||||
gen.seed(1234);
|
||||
}
|
||||
|
||||
// compile-time sanity checks
|
||||
static_assert( HasOperatorPlusEq<State>::value, "your state needs a += operator!" );
|
||||
static_assert( HasOperatorDivEq<State>::value, "your state needs a /= operator!" );
|
||||
static_assert( HasOperatorMul<State>::value, "your state needs a * operator!" );
|
||||
//static_assert( std::is_constructible<State, Point3>::value, "your state needs a constructor with Point3!");
|
||||
//todo: static assert for getx, gety, getz, setposition
|
||||
void resample(std::vector<Particle<State>>& particles) override {
|
||||
|
||||
grid->clear();
|
||||
for (Particle<State> p : particles){
|
||||
//grid.add receives position in meter!
|
||||
// compile-time sanity checks
|
||||
static_assert( HasOperatorPlusEq<State>::value, "your state needs a += operator!" );
|
||||
static_assert( HasOperatorDivEq<State>::value, "your state needs a /= operator!" );
|
||||
static_assert( HasOperatorMul<State>::value, "your state needs a * operator!" );
|
||||
//static_assert( std::is_constructible<State, Point3>::value, "your state needs a constructor with Point3!");
|
||||
//todo: static assert for getx, gety, getz, setposition
|
||||
|
||||
//if weight is to low, remove.
|
||||
if((float) p.weight > 0 ){
|
||||
grid->add(p.state.getX(), p.state.getY(), p.state.getZ(), p.weight);
|
||||
}
|
||||
}
|
||||
grid->clear();
|
||||
for (Particle<State> p : particles){
|
||||
//grid.add receives position in meter!
|
||||
|
||||
int nFilt = 3;
|
||||
float sigmaX = bandwith.x / grid->binSizeX;
|
||||
float sigmaY = bandwith.y / grid->binSizeY;
|
||||
float sigmaZ = bandwith.z / grid->binSizeZ;
|
||||
//if weight is to low, remove.
|
||||
if((float) p.weight > 0 ){
|
||||
grid->add(p.state.getX(), p.state.getY(), p.state.getZ(), p.weight);
|
||||
}
|
||||
}
|
||||
|
||||
BoxGaus3D<float> boxGaus;
|
||||
boxGaus.approxGaus(grid->image(), Point3(sigmaX, sigmaY, sigmaZ), nFilt);
|
||||
int nFilt = 3;
|
||||
float sigmaX = bandwith.x / grid->binSizeX;
|
||||
float sigmaY = bandwith.y / grid->binSizeY;
|
||||
float sigmaZ = bandwith.z / grid->binSizeZ;
|
||||
|
||||
// fill a drawlist with N equal distributed particles
|
||||
// assign them a weight based on the KDE density.
|
||||
DrawList<Point3> dl;
|
||||
for (int i = 0; i < 10000; ++i){
|
||||
NM::NavMeshLocation<Tria> tmpPos = mesh->getRandom().draw();
|
||||
float weight = grid->fetch(tmpPos.pos.x, tmpPos.pos.y, tmpPos.pos.z);
|
||||
BoxGaus3D<float> boxGaus;
|
||||
boxGaus.approxGaus(grid->image(), Point3(sigmaX, sigmaY, sigmaZ), nFilt);
|
||||
|
||||
dl.add(tmpPos.pos, weight);
|
||||
}
|
||||
// fill a drawlist with N equal distributed particles
|
||||
// assign them a weight based on the KDE density.
|
||||
DrawList<Point3> dl;
|
||||
for (int i = 0; i < 10000; ++i){
|
||||
NM::NavMeshLocation<Tria> tmpPos = mesh->getRandom().draw(); //TODO: Hier kommen oft seltsame "Randomwerte" raus, die nur innerhalb eines Dreiecks sind. Woran liegt das?
|
||||
float weight = grid->fetch(tmpPos.pos.x, tmpPos.pos.y, tmpPos.pos.z);
|
||||
|
||||
// used the same particles to not lose the heading.
|
||||
dl.add(tmpPos.pos, weight);
|
||||
}
|
||||
|
||||
// TODO: Summe aller Partikel wird relativ schnell 0! Ich vermute da am Anfang ein einzelner Partikel stark gewichtet ist und alleine
|
||||
// die Dichte repräsentiert über die KDE. Jetzt wird beim nächsten zufälligen ziehen an dieser Stelle keiner der 10k partikel dort gezogen, d.h. alle
|
||||
// haben ein Gewicht von 0 und ciao.
|
||||
// Lösung: erstmal equal weight versuchen. ansonten: warum nehmen wir nochmal diese 10k? und nciht einfach die partikel die wir eh schon haben?
|
||||
for (int i = 0; i < particles.size(); ++i){
|
||||
// used the same particles to not lose the heading.
|
||||
for (int i = 0; i < particles.size(); ++i){
|
||||
|
||||
double tmpWeight = 1;
|
||||
particles[i].state.pos = mesh->getLocation(dl.get(tmpWeight));
|
||||
particles[i].weight = tmpWeight;
|
||||
}
|
||||
}
|
||||
};
|
||||
double tmpWeight = 1;
|
||||
particles[i].state.pos = mesh->getLocation(dl.get(tmpWeight));
|
||||
particles[i].weight = tmpWeight;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
}
|
||||
|
||||
@@ -100,7 +100,7 @@ namespace SMC {
|
||||
|
||||
auto mode = drawMode(cumTransitionModeProbability);
|
||||
newParticles[k] = drawParticle(mode);
|
||||
newParticles[k].weight = equalWeight;
|
||||
newParticles[k].weight = equalWeight; //todo: why equal weight? i guess if the different filters have different representations of probability?
|
||||
}
|
||||
|
||||
focusedFilter.setParticles(newParticles);
|
||||
@@ -133,7 +133,7 @@ namespace SMC {
|
||||
/** draw one particle according to its weight from the copy vector of a given mode */
|
||||
const Particle<State>& drawParticle(ParticleFilterMixing<State, Control, Observation>& filter) {
|
||||
|
||||
double weights = filter.getParticles().back().weight;
|
||||
//double weights = filter.getParticles().back().weight;
|
||||
|
||||
// generate random values between [0:cumWeight]
|
||||
std::uniform_real_distribution<float> dist(0, filter.getParticles().back().weight);
|
||||
|
||||
Reference in New Issue
Block a user