worked on 2D/3D raytracing
adjusted BVH improved 2D/3D BVH new bounding volumes new test cases renamed some test-cases for grouping reasons made GPC header-only using slight adjustments
This commit is contained in:
@@ -75,8 +75,8 @@ ADD_DEFINITIONS(
|
||||
-fstack-protector-all
|
||||
|
||||
-g3
|
||||
# -O0
|
||||
-O2
|
||||
-O0
|
||||
#-O2
|
||||
-march=native
|
||||
|
||||
-DWITH_TESTS
|
||||
|
||||
22
geo/BBox2.h
22
geo/BBox2.h
@@ -1,8 +1,9 @@
|
||||
#ifndef BBOX2_H
|
||||
#define BBOX2_H
|
||||
#ifndef GEO_BBOX2_H
|
||||
#define GEO_BBOX2_H
|
||||
|
||||
#include "Point2.h"
|
||||
#include "Line2.h"
|
||||
#include <vector>
|
||||
|
||||
class BBox2 {
|
||||
|
||||
@@ -105,6 +106,21 @@ public:
|
||||
p2 += Point2(val, val); // increase maximum
|
||||
}
|
||||
|
||||
/** grow the bbox by the amount given for each dimension */
|
||||
void growRel(const float val) {
|
||||
const Point2 center = (p1+p2)/2;
|
||||
p1 += (p1-center)*val; // decrease minimum
|
||||
p2 += (p2-center)*val; // increase maximum
|
||||
}
|
||||
|
||||
|
||||
/** combine two bboxes */
|
||||
static BBox2 join(const BBox2& bb1, const BBox2& bb2) {
|
||||
const Point2 min( std::min(bb1.p1.x, bb2.p1.x), std::min(bb1.p1.y, bb2.p1.y) );
|
||||
const Point2 max( std::max(bb1.p2.x, bb2.p2.x), std::max(bb1.p2.y, bb2.p2.y) );
|
||||
return BBox2(min, max);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
#endif // BBOX2_H
|
||||
#endif // GEO_BBOX2_H
|
||||
|
||||
@@ -103,6 +103,13 @@ public:
|
||||
return true;
|
||||
}
|
||||
|
||||
/** combine two bboxes */
|
||||
static BBox3 join(const BBox3& bb1, const BBox3& bb2) {
|
||||
const Point3 min( std::min(bb1.p1.x, bb2.p1.x), std::min(bb1.p1.y, bb2.p1.y), std::min(bb1.p1.z, bb2.p1.z) );
|
||||
const Point3 max( std::max(bb1.p2.x, bb2.p2.x), std::max(bb1.p2.y, bb2.p2.y), std::max(bb1.p2.z, bb2.p2.z) );
|
||||
return BBox3(min,max);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
#endif // BBOX3_H
|
||||
|
||||
304
geo/Circle2.h
Normal file
304
geo/Circle2.h
Normal file
@@ -0,0 +1,304 @@
|
||||
#ifndef CIRCLE2_H
|
||||
#define CIRCLE2_H
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "Point2.h"
|
||||
#include "Ray2.h"
|
||||
|
||||
#include "../Assertions.h"
|
||||
|
||||
//#include <KLib/misc/gnuplot/Gnuplot.h>
|
||||
//#include <KLib/misc/gnuplot/GnuplotPlot.h>
|
||||
//#include <KLib/misc/gnuplot/GnuplotPlotElementLines.h>
|
||||
//#include <KLib/misc/gnuplot/GnuplotPlotElementPoints.h>
|
||||
|
||||
struct Circle2 {
|
||||
|
||||
Point2 center;
|
||||
|
||||
float radius;
|
||||
|
||||
public:
|
||||
|
||||
/** empty ctor */
|
||||
Circle2() : center(), radius(0) {;}
|
||||
|
||||
/** ctor */
|
||||
Circle2(const Point2 center, const float radius) : center(center), radius(radius) {;}
|
||||
|
||||
|
||||
/** does this circle contain the given point? */
|
||||
bool contains(const Point2 p) const {
|
||||
return center.getDistance(p) <= radius;
|
||||
}
|
||||
|
||||
/** does this circle contain the given point? */
|
||||
bool containsAll(const std::vector<Point2>& pts) const {
|
||||
for (const Point2& p : pts) {
|
||||
if (!contains(p)) {return false;}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/** get a point on the circle for the given radians */
|
||||
Point2 getPointAt(const float rad) const {
|
||||
return center + Point2(std::cos(rad), std::sin(rad)) * radius;
|
||||
}
|
||||
|
||||
|
||||
/** does this circle contain the given circle? */
|
||||
bool contains(const Circle2 c) const {
|
||||
return (center.getDistance(c.center)+c.radius) <= radius;
|
||||
}
|
||||
|
||||
/** does this circle intersect with the given ray? */
|
||||
bool intersects(const Ray2 ray) const {
|
||||
|
||||
// https://math.stackexchange.com/questions/311921/get-location-of-vector-circle-intersection
|
||||
const float a = ray.dir.x*ray.dir.x + ray.dir.y*ray.dir.y;
|
||||
const float b = 2 * ray.dir.x * (ray.start.x-center.x) + 2 * ray.dir.y * (ray.start.y - center.y);
|
||||
const float c = (ray.start.x-center.x) * (ray.start.x-center.x) + (ray.start.y - center.y)*(ray.start.y - center.y) - radius*radius;
|
||||
const float discr = b*b - 4*a*c;
|
||||
|
||||
return discr >= 0;
|
||||
|
||||
}
|
||||
|
||||
|
||||
/** configure this sphere to contain the given point-set */
|
||||
void adjustToPointSet(const std::vector<Point2>& lst) {
|
||||
|
||||
//adjustToPointSetAPX(lst);
|
||||
adjustToPointSetExact(lst);
|
||||
|
||||
// validate
|
||||
for (const Point2& p : lst) {
|
||||
Assert::isTrue(this->contains(p), "calculated circle seems incorrect");
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/** combine two circles into a new one containing both */
|
||||
static Circle2 join(const Circle2& a, const Circle2& b) {
|
||||
|
||||
// if one already contains the other, just return it as-is
|
||||
if (a.contains(b)) {return a;}
|
||||
if (b.contains(a)) {return b;}
|
||||
|
||||
// create both maximum ends
|
||||
const Point2 out1 = a.center + (a.center-b.center).normalized() * a.radius;
|
||||
const Point2 out2 = b.center + (b.center-a.center).normalized() * b.radius;
|
||||
|
||||
// center is within both ends, so is the radius
|
||||
Point2 newCen = (out1 + out2) / 2;
|
||||
float newRad = out1.getDistance(out2) / 2 * 1.0001; // slightly larger to prevent rounding issues
|
||||
Circle2 res(newCen, newRad);
|
||||
|
||||
// check
|
||||
Assert::isTrue(res.contains(a), "sphere joining error. base-spheres are not contained.");
|
||||
Assert::isTrue(res.contains(b), "sphere joining error. base-spheres are not contained.");
|
||||
|
||||
return res;
|
||||
|
||||
}
|
||||
|
||||
float getArea() const {
|
||||
return M_PI * (radius*radius);
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
/*
|
||||
void show(std::vector<Point2> pts, const Point2 P, const Point2 Q, const Point2 R = Point2(NAN, NAN)) {
|
||||
|
||||
static K::Gnuplot gp;
|
||||
|
||||
K::GnuplotPlot plot;
|
||||
K::GnuplotPlotElementPoints gPoints; plot.add(&gPoints); gPoints.setColor(K::GnuplotColor::fromHexStr("#0000ff")); gPoints.setPointSize(1);
|
||||
K::GnuplotPlotElementLines gLines; plot.add(&gLines);
|
||||
|
||||
for (const Point2 p : pts) {
|
||||
K::GnuplotPoint2 p2(p.x, p.y);
|
||||
gPoints.add(p2);
|
||||
}
|
||||
|
||||
K::GnuplotPoint2 gP(P.x, P.y);
|
||||
K::GnuplotPoint2 gQ(Q.x, Q.y);
|
||||
gLines.addSegment(gP, gQ);
|
||||
|
||||
K::GnuplotPoint2 gR(R.x, R.y);
|
||||
//gLines.addSegment(gP, gR);
|
||||
gLines.addSegment(gQ, gR);
|
||||
|
||||
for (float f = 0; f < M_PI*2; f += 0.1) {
|
||||
Point2 p = center + Point2(std::cos(f), std::sin(f)) * radius;
|
||||
K::GnuplotPoint2 gp (p.x, p.y);
|
||||
gLines.add(gp);
|
||||
}
|
||||
|
||||
gp << "set size ratio -1\n";
|
||||
gp.draw(plot);
|
||||
gp.flush();
|
||||
|
||||
int i = 0; (void) i;
|
||||
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
// Graphic Gems 2 - Jon Rokne
|
||||
void adjustToPointSetExact(const std::vector<Point2>& _lst) {
|
||||
|
||||
if (_lst.size() == 2) {
|
||||
this->center = (_lst[0] + _lst[1]) / 2;
|
||||
this->radius = _lst[0].getDistance(_lst[1]) / 2 * 1.0001f;
|
||||
return;
|
||||
}
|
||||
|
||||
std::vector<Point2> lst = _lst;
|
||||
|
||||
// find point P having min(p.y)
|
||||
// NOTE: seems like the original work uses another coordinate system. so we search for max(p.y) instead!
|
||||
auto compMinY = [] (const Point2 p1, const Point2 p2) {return p1.y < p2.y;};
|
||||
auto it1 = std::max_element(lst.begin(), lst.end(), compMinY);
|
||||
Point2 P = *it1;
|
||||
lst.erase(it1);
|
||||
|
||||
// find a point Q such that the angle of the line segment
|
||||
// PQ with the x axis is minimal
|
||||
auto compMinAngleX = [&] (const Point2 p1, const Point2 p2) {
|
||||
|
||||
const Point2 PQ1 = p1 - P;
|
||||
const Point2 PQ2 = p2 - P;
|
||||
|
||||
const float angle1 = dot(PQ1.normalized(), Point2(0,1));
|
||||
const float angle2 = dot(PQ2.normalized(), Point2(0,1));
|
||||
|
||||
return std::acos(angle1) < std::acos(angle2);
|
||||
|
||||
};
|
||||
auto it2 = std::min_element(lst.begin(), lst.end(), compMinAngleX);
|
||||
Point2 Q = *it2;
|
||||
lst.erase(it2);
|
||||
|
||||
// get the angle abc which is the angle at "b"
|
||||
auto angle = [] (const Point2 a, const Point2 b, const Point2 c) {
|
||||
const Point2 ba = a - b;
|
||||
const Point2 bc = c - b;
|
||||
return std::acos(dot(ba.normalized(), bc.normalized()));
|
||||
};
|
||||
|
||||
// TODO: how many loops?
|
||||
for (size_t xx = 0; xx < lst.size()*10; ++xx) {
|
||||
|
||||
auto compMinAnglePRQ = [P,Q,angle] (const Point2 p1, const Point2 p2) {
|
||||
return std::abs(angle(P,p1,Q)) < std::abs(angle(P,p2,Q));
|
||||
};
|
||||
|
||||
auto it3 = std::min_element(lst.begin(), lst.end(), compMinAnglePRQ);
|
||||
|
||||
Point2 R = *it3;
|
||||
lst.erase(it3);
|
||||
|
||||
const float anglePRQ = angle(P,R,Q);
|
||||
const float angleRPQ = angle(R,P,Q);
|
||||
const float anglePQR = angle(P,Q,R);
|
||||
|
||||
//check for case 1 (angle PRQ is obtuse), the circle is determined
|
||||
//by two points, P and Q. radius = |(P-Q)/2|, center = (P+Q)/2
|
||||
if (anglePRQ > M_PI/2) {
|
||||
|
||||
this->radius = P.getDistance(Q) / 2 * 1.001f;
|
||||
this->center = (P+Q)/2;
|
||||
//if (!containsAll(_lst)) {show(_lst, P, Q, R);}
|
||||
return;
|
||||
|
||||
}
|
||||
|
||||
if (angleRPQ > M_PI/2) {
|
||||
lst.push_back(P);
|
||||
P = R;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (anglePQR > M_PI/2) {
|
||||
lst.push_back(Q);
|
||||
Q = R;
|
||||
continue;
|
||||
}
|
||||
|
||||
const Point2 mPQ = (P+Q)/2;
|
||||
const Point2 mQR = (Q+R)/2;
|
||||
|
||||
const float numer = -(-mPQ.y * R.y + mPQ.y * Q.y + mQR.y * R.y - mQR.y * Q.y - mPQ.x * R.x + mPQ.x * Q.x + mQR.x * R.x - mQR.x * Q.x);
|
||||
const float denom = (-Q.x * R.y + P.x * R.y - P.x * Q.y + Q.y * R.x - P.y * R.x + P.y * Q.x);
|
||||
const float t = numer / denom;
|
||||
|
||||
const float cx = -t * (Q.y - P.y) + mPQ.x;
|
||||
const float cy = t * (Q.x - P.x) + mPQ.y;
|
||||
this->center = Point2(cx, cy);
|
||||
this->radius = this->center.getDistance(P) * 1.001f;
|
||||
|
||||
//if (!containsAll(_lst)) {show(_lst, P, Q, R);}
|
||||
|
||||
return;
|
||||
|
||||
}
|
||||
|
||||
throw Exception("should not happen");
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
void adjustToPointSetRefine(const std::vector<Point2>& lst) {
|
||||
|
||||
float bestArea = 99999999;
|
||||
|
||||
for (size_t i = 0; i < lst.size(); ++i) {
|
||||
for (size_t j = 0; j < lst.size(); ++j) {
|
||||
if (i == j) {continue;}
|
||||
|
||||
const Point2 center = (lst[i] + lst[j]) / 3;
|
||||
const float radius = lst[i].getDistance(lst[j]);
|
||||
const Circle2 test(center, radius);
|
||||
|
||||
if (test.containsAll(lst)) {
|
||||
if (test.getArea() < bestArea) {
|
||||
bestArea = test.getArea();
|
||||
this->radius = test.radius;
|
||||
this->center = test.center;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
*/
|
||||
void adjustToPointSetAPX(const std::vector<Point2>& lst) {
|
||||
|
||||
// NOT OPTIMAL but fast
|
||||
|
||||
// calculate the point set's center
|
||||
Point2 sum(0,0);
|
||||
for (const Point2 p : lst) {sum += p;}
|
||||
const Point2 center = sum / lst.size();
|
||||
|
||||
// calculate the sphere's radius (maximum distance from center
|
||||
float radius = 0;
|
||||
for (const Point2 p : lst) {
|
||||
const float dist = center.getDistance(p);
|
||||
if (dist > radius) {radius = dist;}
|
||||
}
|
||||
|
||||
this->radius = radius;
|
||||
this->center = center;
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
#endif // CIRCLE2_H
|
||||
@@ -68,6 +68,11 @@ struct Point2 {
|
||||
|
||||
};
|
||||
|
||||
inline float dot(const Point2 p1, const Point2 p2) {
|
||||
return (p1.x*p2.x) + (p1.y*p2.y);
|
||||
}
|
||||
|
||||
|
||||
inline void swap(Point2& p1, Point2& p2) {
|
||||
std::swap(p1.x, p2.x);
|
||||
std::swap(p1.y, p2.y);
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#ifndef POINT3_H
|
||||
#define POINT3_H
|
||||
#ifndef GEO_POINT3_H
|
||||
#define GEO_POINT3_H
|
||||
|
||||
#include "../Assertions.h"
|
||||
#include <cmath>
|
||||
@@ -128,4 +128,4 @@ inline Point3 cross(const Point3 a, const Point3 b) {
|
||||
);
|
||||
}
|
||||
|
||||
#endif // POINT3_H
|
||||
#endif // GEO_POINT3_H
|
||||
|
||||
29
geo/Ray2.h
Normal file
29
geo/Ray2.h
Normal file
@@ -0,0 +1,29 @@
|
||||
#ifndef GEO_RAY2_H
|
||||
#define GEO_RAY2_H
|
||||
|
||||
|
||||
#include "Point2.h"
|
||||
|
||||
struct Ray2 {
|
||||
|
||||
/** starting point */
|
||||
Point2 start;
|
||||
|
||||
/** ray's direction */
|
||||
Point2 dir;
|
||||
|
||||
public:
|
||||
|
||||
/** empty */
|
||||
Ray2() : start(), dir() {
|
||||
;
|
||||
}
|
||||
|
||||
/** ctor */
|
||||
Ray2(Point2 start, Point2 dir) : start(start), dir(dir) {
|
||||
;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
#endif // GEO_RAY2_H
|
||||
@@ -1,5 +1,5 @@
|
||||
#ifndef RAY3_H
|
||||
#define RAY3_H
|
||||
#ifndef GEO_RAY3_H
|
||||
#define GEO_RAY3_H
|
||||
|
||||
#include "Point3.h"
|
||||
|
||||
@@ -25,4 +25,4 @@ public:
|
||||
|
||||
};
|
||||
|
||||
#endif // RAY3_H
|
||||
#endif // GEO_RAY3_H
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
#ifndef SPHERE3_H
|
||||
#define SPHERE3_H
|
||||
#ifndef GEO_SPHERE3_H
|
||||
#define GEO_SPHERE3_H
|
||||
|
||||
#include "Point3.h"
|
||||
#include "Ray3.h"
|
||||
@@ -172,7 +172,7 @@ public:
|
||||
|
||||
// center is within both ends, so is the radius
|
||||
Point3 newCen = (out1 + out2) / 2;
|
||||
float newRad = out1.getDistance(out2) / 2 * 1.001; // slightly larger to prevent rounding issues
|
||||
float newRad = out1.getDistance(out2) / 2 * 1.0001; // slightly larger to prevent rounding issues
|
||||
Sphere3 res(newCen, newRad);
|
||||
|
||||
// check
|
||||
@@ -185,4 +185,4 @@ public:
|
||||
|
||||
};
|
||||
|
||||
#endif // SPHERE3_H
|
||||
#endif // GEO_SPHERE3_H
|
||||
|
||||
102
geo/volume/BVH.h
102
geo/volume/BVH.h
@@ -4,29 +4,36 @@
|
||||
#include <vector>
|
||||
#include <functional>
|
||||
|
||||
#include "../Ray2.h"
|
||||
#include "../Ray3.h"
|
||||
|
||||
#include "BoundingVolume.h"
|
||||
#include "BoundingVolumeAABB.h"
|
||||
#include "BoundingVolumeSphere.h"
|
||||
|
||||
#include "BoundingVolumeAABB2.h"
|
||||
#include "BoundingVolumeCircle2.h"
|
||||
|
||||
#include "BoundingVolumeAABB3.h"
|
||||
#include "BoundingVolumeSphere3.h"
|
||||
|
||||
|
||||
|
||||
|
||||
template <typename Element, typename Volume, typename Wrapper> class BVH {
|
||||
template <typename Element, typename Ray, typename Point, typename Volume, typename Wrapper> class BVH {
|
||||
|
||||
protected:
|
||||
|
||||
/** one node within the tree */
|
||||
struct BVHNode {
|
||||
bool isLeaf = true;
|
||||
bool isLeaf;
|
||||
bool check;
|
||||
Volume boundingVolume;
|
||||
std::vector<BVHNode*> childNodes;
|
||||
BVHNode(bool isLeaf = false) : isLeaf(isLeaf) {;}
|
||||
BVHNode(bool isLeaf = false, bool check = true) : isLeaf(isLeaf), check(check) {;}
|
||||
};
|
||||
|
||||
/** one leaf within the tree */
|
||||
struct BVHLeaf : public BVHNode {
|
||||
Element element;
|
||||
BVHLeaf(const Element& e) : BVHNode(true), element(e) {;}
|
||||
BVHLeaf(const Element& e, const bool check) : BVHNode(true, check), element(e) {;}
|
||||
};
|
||||
|
||||
/** the tree's root */
|
||||
@@ -40,10 +47,10 @@ public:
|
||||
}
|
||||
|
||||
/** add a new volume to the tree */
|
||||
void add(const Element& element) {
|
||||
void add(const Element& element, const bool leafCheck = true) {
|
||||
|
||||
// create a new leaf for this element
|
||||
BVHLeaf* leaf = new BVHLeaf(element);
|
||||
BVHLeaf* leaf = new BVHLeaf(element, leafCheck);
|
||||
|
||||
// get the element's boundin volume
|
||||
leaf->boundingVolume = getBoundingVolume(element);
|
||||
@@ -63,17 +70,17 @@ public:
|
||||
return max;
|
||||
}
|
||||
|
||||
void getHits(const Ray3 ray, std::function<void(const Element&)> func) const {
|
||||
//int tests = 0; int leafs = 0;
|
||||
|
||||
void getHits(const Ray& ray, const std::function<void(const Element&)>& func) const {
|
||||
getHits(ray, &root, func);
|
||||
//std::cout << tests << " " << leafs << std::endl;
|
||||
}
|
||||
|
||||
void getHits(const Ray3 ray, const BVHNode* node, std::function<void(const Element&)> func) const {
|
||||
// this one has to be as fast as possible!
|
||||
static void getHits(const Ray& ray, const BVHNode* node, const std::function<void(const Element&)>& func) {
|
||||
for (const BVHNode* sub : node->childNodes) {
|
||||
if (sub->boundingVolume.intersects(ray)) {
|
||||
if (!sub->check || sub->boundingVolume.intersects(ray)) {
|
||||
if (sub->isLeaf) {
|
||||
BVHLeaf* leaf = (BVHLeaf*)(sub); // TODO: cast
|
||||
const BVHLeaf* leaf = static_cast<const BVHLeaf*>(sub);
|
||||
func(leaf->element);
|
||||
} else {
|
||||
getHits(ray, sub, func);
|
||||
@@ -82,8 +89,50 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
/** get the tree's depth */
|
||||
int getDepth() const {
|
||||
return getDepth(&root, 1);
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
|
||||
/** call the given function for each leaf within the given subtree */
|
||||
void forEachLeaf(const BVHNode* n, std::function<void(const BVHNode*)> func) const {
|
||||
if (n->isLeaf) {
|
||||
func(n);
|
||||
} else {
|
||||
for (BVHNode* child : n->childNodes) {
|
||||
forEachLeaf(child, func);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** determine/approximate a new bounding volume around n1+n2 */
|
||||
Volume getVolAround(const BVHNode* n1, const BVHNode* n2) const {
|
||||
//return getVolAroundExact(n1, n2);
|
||||
return getVolAroundAPX(n1, n2);
|
||||
}
|
||||
|
||||
/** determine the bounding-volume around n1 and n2 by (slowly) calculating a new, exact volume based on all leaf-elements */
|
||||
Volume getVolAroundExact(const BVHNode* n1, const BVHNode* n2) const {
|
||||
std::vector<Point> verts;
|
||||
auto onLeaf = [&] (const BVHNode* n) {
|
||||
BVHLeaf* leaf = (BVHLeaf*) n;
|
||||
std::vector<Point> subVerts = Wrapper::getVertices(leaf->element);
|
||||
verts.insert(verts.end(), subVerts.begin(), subVerts.end());
|
||||
};
|
||||
forEachLeaf(n1, onLeaf);
|
||||
forEachLeaf(n2, onLeaf);
|
||||
return Volume::fromVertices(verts);
|
||||
}
|
||||
|
||||
/** approximate the bounding-volume around n1 and n2 by (quickly) joining their current volumes. the result might be unnecessarily large */
|
||||
Volume getVolAroundAPX(const BVHNode* n1, const BVHNode* n2) const {
|
||||
return Volume::join(n1->boundingVolume, n2->boundingVolume);
|
||||
}
|
||||
|
||||
|
||||
bool combineBest() {
|
||||
|
||||
// nothing to do?
|
||||
@@ -104,7 +153,7 @@ private:
|
||||
BVHNode* n1 = root.childNodes[i];
|
||||
BVHNode* n2 = root.childNodes[j];
|
||||
|
||||
const Volume newVol = Volume::join(n1->boundingVolume, n2->boundingVolume);
|
||||
const Volume newVol = getVolAround(n1,n2);
|
||||
const float newVolSize = newVol.getVolumeSize();
|
||||
if (newVolSize < best.volSize) {
|
||||
best.vol = newVol;
|
||||
@@ -226,13 +275,32 @@ private:
|
||||
|
||||
}
|
||||
|
||||
int getDepth(const BVHNode* node, const int cur) const {
|
||||
if (node->isLeaf) {
|
||||
return cur;
|
||||
} else {
|
||||
int res = cur;
|
||||
for (const BVHNode* sub : node->childNodes) {
|
||||
const int subDepth = getDepth(sub, cur+1);
|
||||
if (subDepth > res) {res = subDepth;}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/** get a bounding-volume for the given element */
|
||||
Volume getBoundingVolume(const Element& element) {
|
||||
const std::vector<Point3> verts = Wrapper::getVertices(element);
|
||||
const std::vector<Point> verts = Wrapper::getVertices(element);
|
||||
return Volume::fromVertices(verts);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
template <typename Element, typename Volume, typename Wrapper> class BVH3 : public BVH<Element, Ray3, Point3, Volume, Wrapper> {
|
||||
|
||||
};
|
||||
|
||||
template <typename Element, typename Volume, typename Wrapper> class BVH2 : public BVH<Element, Ray2, Point2, Volume, Wrapper> {
|
||||
|
||||
};
|
||||
|
||||
|
||||
@@ -2,39 +2,52 @@
|
||||
#define BVHDEBUG_H
|
||||
|
||||
#include "BVH.h"
|
||||
|
||||
|
||||
#include <KLib/misc/gnuplot/Gnuplot.h>
|
||||
|
||||
#include <KLib/misc/gnuplot/GnuplotSplot.h>
|
||||
#include <KLib/misc/gnuplot/GnuplotSplotElementPoints.h>
|
||||
#include <KLib/misc/gnuplot/GnuplotSplotElementColorPoints.h>
|
||||
#include <KLib/misc/gnuplot/GnuplotSplotElementLines.h>
|
||||
#include <KLib/misc/gnuplot/Gnuplot.h>
|
||||
|
||||
#include <KLib/misc/gnuplot/GnuplotPlot.h>
|
||||
#include <KLib/misc/gnuplot/GnuplotPlotElementPoints.h>
|
||||
#include <KLib/misc/gnuplot/GnuplotPlotElementColorLines.h>
|
||||
#include <KLib/misc/gnuplot/GnuplotPlotElementLines.h>
|
||||
|
||||
#include "../BBox3.h"
|
||||
#include <random>
|
||||
|
||||
/** adds some debug helpers to the BVH */
|
||||
template <typename Element, typename Volume, typename Wrapper> class BVHDebug : public BVH<Element, Volume, Wrapper> {
|
||||
///** adds some debug helpers to the BVH */
|
||||
//template <typename Element, typename Ray, typename Point, typename Volume, typename Wrapper> class BVHDebug : public BVH<Element, Ray, Point, Volume, Wrapper> {
|
||||
|
||||
|
||||
//};
|
||||
|
||||
template <typename Element, typename Volume, typename Wrapper> class BVH3Debug : public BVH<Element, Ray3, Point3, Volume, Wrapper> {
|
||||
|
||||
using BVHNode = typename BVH<Element, Ray3, Point3, Volume, Wrapper>::BVHNode;
|
||||
using BVHLeaf = typename BVH<Element, Ray3, Point3, Volume, Wrapper>::BVHLeaf;
|
||||
|
||||
using BVHNode = typename BVH<Element, Volume, Wrapper>::BVHNode;
|
||||
using BVHLeaf = typename BVH<Element, Volume, Wrapper>::BVHLeaf;
|
||||
|
||||
public:
|
||||
|
||||
// std::vecto<std::string> colors {
|
||||
// "#888888", "#888800", "#008888", "#880088", "#ee0000", "#00ee00", "#0000ee"
|
||||
// };
|
||||
|
||||
void show(int maxPts = 1500, bool showLeafs = true) {
|
||||
|
||||
std::stringstream out;
|
||||
|
||||
static K::Gnuplot gp;
|
||||
K::GnuplotSplot plot;
|
||||
K::GnuplotSplotElementColorPoints pVol; plot.add(&pVol); //pVol.setColor(K::GnuplotColor::fromRGB(128,128,128));
|
||||
K::GnuplotSplotElementPoints pElemPoints; plot.add(&pElemPoints); pElemPoints.setColor(K::GnuplotColor::fromRGB(0,0,255));
|
||||
K::GnuplotSplotElementLines pElemLines; plot.add(&pElemLines); pElemLines.getStroke().setColor(K::GnuplotColor::fromRGB(0,0,255));
|
||||
|
||||
const int depth = recurse(maxPts, showLeafs, 0, &this->root, pVol, pElemPoints, pElemLines);
|
||||
K::GnuplotSplotElementColorPoints pVol; plot.add(&pVol); //pVol.setColor(K::GnuplotColor::fromRGB(128,128,128));
|
||||
K::GnuplotSplotElementPoints pElemPoints; plot.add(&pElemPoints); pElemPoints.setColor(K::GnuplotColor::fromRGB(0,0,255));
|
||||
K::GnuplotSplotElementLines pElemLines; plot.add(&pElemLines); pElemLines.getStroke().setColor(K::GnuplotColor::fromRGB(0,0,255));
|
||||
|
||||
plot.getAxisCB().setRange(0, depth);
|
||||
const int maxDepth = this->getDepth();
|
||||
recurse(maxPts, showLeafs, 0, &this->root, pVol, pElemPoints, pElemLines);
|
||||
|
||||
plot.getAxisCB().setRange(0, maxDepth);
|
||||
|
||||
gp << "set view equal xyz\n";
|
||||
gp.draw(plot);
|
||||
@@ -44,6 +57,31 @@ public:
|
||||
|
||||
private:
|
||||
|
||||
Point3 getRandomPoint(BoundingVolumeSphere3 sphere) {
|
||||
static std::minstd_rand gen;
|
||||
std::uniform_real_distribution<float> dist(-1, +1);
|
||||
Point3 dir = Point3(dist(gen), dist(gen), dist(gen)).normalized() * sphere.radius;
|
||||
return sphere.center + dir;
|
||||
}
|
||||
|
||||
void addLines(const Element& elem, K::GnuplotSplotElementLines& elemLines) {
|
||||
|
||||
std::vector<Point3> pts = Wrapper::getDebugLines(elem);
|
||||
|
||||
for (size_t i = 0; i< pts.size(); i+=2) {
|
||||
|
||||
const Point3 p1 = pts[i+0];
|
||||
const Point3 p2 = pts[i+1];
|
||||
|
||||
K::GnuplotPoint3 gp1(p1.x, p1.y, p1.z);
|
||||
K::GnuplotPoint3 gp2(p2.x, p2.y, p2.z);
|
||||
|
||||
elemLines.addSegment(gp1, gp2);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
int recurse(int maxPts, bool showLeafs, int curDepth, const BVHNode* node, K::GnuplotSplotElementColorPoints& vol, K::GnuplotSplotElementPoints& pElemPoints, K::GnuplotSplotElementLines& elemLines) {
|
||||
|
||||
int resDepth = curDepth;
|
||||
@@ -76,24 +114,53 @@ private:
|
||||
|
||||
}
|
||||
|
||||
Point3 getRandomPoint(BoundingVolumeSphere sphere) {
|
||||
static std::minstd_rand gen;
|
||||
std::uniform_real_distribution<float> dist(-1, +1);
|
||||
Point3 dir = Point3(dist(gen), dist(gen), dist(gen)).normalized() * sphere.radius;
|
||||
return sphere.center + dir;
|
||||
};
|
||||
|
||||
template <typename Element, typename Volume, typename Wrapper> class BVH2Debug : public BVH<Element, Ray2, Point2, Volume, Wrapper> {
|
||||
|
||||
using BVHNode = typename BVH<Element, Ray2, Point2, Volume, Wrapper>::BVHNode;
|
||||
using BVHLeaf = typename BVH<Element, Ray2, Point2, Volume, Wrapper>::BVHLeaf;
|
||||
|
||||
public:
|
||||
|
||||
void show(int maxPts = 1500, bool showLeafs = true) {
|
||||
|
||||
std::stringstream out;
|
||||
|
||||
static K::Gnuplot gp;
|
||||
K::GnuplotPlot plot;
|
||||
|
||||
|
||||
K::GnuplotPlotElementColorLines pVolLines; plot.add(&pVolLines);
|
||||
K::GnuplotPlotElementPoints pElemPoints; plot.add(&pElemPoints); pElemPoints.setColor(K::GnuplotColor::fromRGB(0,0,255));
|
||||
K::GnuplotPlotElementLines pElemLines; plot.add(&pElemLines); pElemLines.getStroke().setColor(K::GnuplotColor::fromRGB(0,0,255));
|
||||
|
||||
const int maxDepth = this->getDepth();
|
||||
recurse(maxDepth, showLeafs, 0, &this->root, plot, pVolLines, pElemPoints, pElemLines);
|
||||
|
||||
plot.getObjects().reOrderByZIndex();
|
||||
plot.getAxisCB().setRange(0, maxDepth);
|
||||
|
||||
gp << "set size ratio -1\n";
|
||||
gp.draw(plot);
|
||||
gp.flush();
|
||||
|
||||
}
|
||||
|
||||
void addLines(const Element& elem, K::GnuplotSplotElementLines& elemLines) {
|
||||
private:
|
||||
|
||||
std::vector<Point3> pts = Wrapper::getDebugLines(elem);
|
||||
|
||||
void addLines(const Element& elem, K::GnuplotPlotElementLines& elemLines) {
|
||||
|
||||
std::vector<Point2> pts = Wrapper::getDebugLines(elem);
|
||||
|
||||
for (size_t i = 0; i< pts.size(); i+=2) {
|
||||
|
||||
const Point3 p1 = pts[i+0];
|
||||
const Point3 p2 = pts[i+1];
|
||||
const Point2 p1 = pts[i+0];
|
||||
const Point2 p2 = pts[i+1];
|
||||
|
||||
K::GnuplotPoint3 gp1(p1.x, p1.y, p1.z);
|
||||
K::GnuplotPoint3 gp2(p2.x, p2.y, p2.z);
|
||||
K::GnuplotPoint2 gp1(p1.x, p1.y);
|
||||
K::GnuplotPoint2 gp2(p2.x, p2.y);
|
||||
|
||||
elemLines.addSegment(gp1, gp2);
|
||||
|
||||
@@ -101,6 +168,75 @@ private:
|
||||
|
||||
}
|
||||
|
||||
std::vector<std::string> colors = {
|
||||
"#888800", "#444400", "#008888", "#004444", "#880088", "#440044", "#ee0000", "#880000", "#00ee00", "#008800", "#0000ee", "#000088",
|
||||
"#888800", "#444400", "#008888", "#004444", "#880088", "#440044", "#ee0000", "#880000", "#00ee00", "#008800", "#0000ee", "#000088",
|
||||
"#888800", "#444400", "#008888", "#004444", "#880088", "#440044", "#ee0000", "#880000", "#00ee00", "#008800", "#0000ee", "#000088"
|
||||
};
|
||||
|
||||
void showVolume(const BoundingVolumeCircle2& circle, int maxDepth, int curDepth, K::GnuplotPlot& plot, K::GnuplotPlotElementColorLines& pVolLines) {
|
||||
K::GnuplotObjectPolygon* poly = new K::GnuplotObjectPolygon();
|
||||
for (int i = 0; i < 20; ++i) {
|
||||
const float f = M_PI*2 * i / 19;
|
||||
const Point2 p = circle.getPointAt(f);
|
||||
poly->add(K::GnuplotCoordinate2(p.x, p.y, K::GnuplotCoordinateSystem::FIRST));
|
||||
poly->getFill().setColor(K::GnuplotColor::fromHexStr(colors[maxDepth-curDepth]));
|
||||
poly->getFill().setStyle(K::GnuplotFillStyle::SOLID);
|
||||
poly->setZIndex(curDepth);
|
||||
}
|
||||
plot.getObjects().add(poly);
|
||||
}
|
||||
|
||||
void showVolume(const BoundingVolumeAABB2& _aabb, int maxDepth, int curDepth, K::GnuplotPlot& plot, K::GnuplotPlotElementColorLines& pVolLines) {
|
||||
BBox2 bbox2 = _aabb;
|
||||
bbox2.grow( (10-curDepth) / 100.0f );
|
||||
// pVolLines.add(K::GnuplotPoint2(bbox2.getMin().x, bbox2.getMin().y), curDepth);
|
||||
// pVolLines.add(K::GnuplotPoint2(bbox2.getMax().x, bbox2.getMin().y), curDepth);
|
||||
// pVolLines.add(K::GnuplotPoint2(bbox2.getMax().x, bbox2.getMax().y), curDepth);
|
||||
// pVolLines.add(K::GnuplotPoint2(bbox2.getMin().x, bbox2.getMax().y), curDepth);
|
||||
// pVolLines.add(K::GnuplotPoint2(bbox2.getMin().x, bbox2.getMin().y), curDepth);
|
||||
// pVolLines.splitFace();
|
||||
K::GnuplotObjectPolygon* poly = new K::GnuplotObjectPolygon();
|
||||
poly->getStroke().setColor(K::GnuplotColor::fromHexStr(colors[maxDepth-curDepth]));
|
||||
//poly->getFill().setColor(K::GnuplotColor::fromHexStr(colors[maxDepth-curDepth]));
|
||||
//poly->getFill().setStyle(K::GnuplotFillStyle::SOLID);
|
||||
poly->add(K::GnuplotCoordinate2(bbox2.getMin().x, bbox2.getMin().y, K::GnuplotCoordinateSystem::FIRST));
|
||||
poly->add(K::GnuplotCoordinate2(bbox2.getMax().x, bbox2.getMin().y, K::GnuplotCoordinateSystem::FIRST));
|
||||
poly->add(K::GnuplotCoordinate2(bbox2.getMax().x, bbox2.getMax().y, K::GnuplotCoordinateSystem::FIRST));
|
||||
poly->add(K::GnuplotCoordinate2(bbox2.getMin().x, bbox2.getMax().y, K::GnuplotCoordinateSystem::FIRST));
|
||||
poly->close();
|
||||
poly->setZIndex(curDepth);
|
||||
plot.getObjects().add(poly);
|
||||
}
|
||||
|
||||
int recurse(int maxDepth, bool showLeafs, int curDepth, const BVHNode* node, K::GnuplotPlot& plot, K::GnuplotPlotElementColorLines& pVolLines, K::GnuplotPlotElementPoints& pElemPoints, K::GnuplotPlotElementLines& elemLines) {
|
||||
|
||||
int resDepth = curDepth;
|
||||
|
||||
for (BVHNode* sub : node->childNodes) {
|
||||
resDepth = recurse(maxDepth, showLeafs, curDepth+1, sub, plot, pVolLines, pElemPoints, elemLines);
|
||||
}
|
||||
|
||||
if (!node->isLeaf || showLeafs) {
|
||||
if (node != &this->root) {
|
||||
//const int numPts = maxPts / (curDepth+1);
|
||||
showVolume(node->boundingVolume, maxDepth, curDepth, plot, pVolLines);
|
||||
}
|
||||
}
|
||||
|
||||
if (node->isLeaf) {
|
||||
BVHLeaf* leaf = (BVHLeaf*) node;
|
||||
std::vector<Point2> verts = Wrapper::getVertices(leaf->element);
|
||||
for (const Point2 p : verts) {
|
||||
pElemPoints.add(K::GnuplotPoint2(p.x, p.y));
|
||||
}
|
||||
addLines(leaf->element, elemLines);
|
||||
}
|
||||
|
||||
return resDepth;
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
#endif // BVHDEBUG_H
|
||||
|
||||
36
geo/volume/BoundingVolumeAABB2.h
Normal file
36
geo/volume/BoundingVolumeAABB2.h
Normal file
@@ -0,0 +1,36 @@
|
||||
#ifndef BOUNDINGVOLUMEAABB2_H
|
||||
#define BOUNDINGVOLUMEAABB2_H
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "BoundingVolume.h"
|
||||
#include "../BBox2.h"
|
||||
|
||||
class BoundingVolumeAABB2 : public BBox2 {
|
||||
|
||||
public:
|
||||
|
||||
BoundingVolumeAABB2() {;}
|
||||
|
||||
BoundingVolumeAABB2(const BBox2& bb) : BBox2(bb) {;}
|
||||
|
||||
float getVolumeSize() const {
|
||||
const float dx = getMax().x - getMin().x;
|
||||
const float dy = getMax().y - getMin().y;
|
||||
return (dx*dy);
|
||||
}
|
||||
|
||||
/** construct a volume around the given point-set */
|
||||
static BoundingVolumeAABB2 fromVertices(const std::vector<Point2>& verts) {
|
||||
BoundingVolumeAABB2 bvs;
|
||||
for (const Point2 p : verts) {bvs.add(p);}
|
||||
return bvs;
|
||||
}
|
||||
|
||||
static BoundingVolumeAABB2 join(const BoundingVolumeAABB2 a, const BoundingVolumeAABB2 b) {
|
||||
return BoundingVolumeAABB2(BBox2::join(a, b));
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
#endif // BOUNDINGVOLUMEAABB2_H
|
||||
@@ -1,4 +0,0 @@
|
||||
#ifndef BOUNDINGVOLUMEBOX_H
|
||||
#define BOUNDINGVOLUMEBOX_H
|
||||
|
||||
#endif // BOUNDINGVOLUMEBOX_H
|
||||
38
geo/volume/BoundingVolumeCircle2.h
Normal file
38
geo/volume/BoundingVolumeCircle2.h
Normal file
@@ -0,0 +1,38 @@
|
||||
#ifndef BOUDINGVOLUMECIRCLE2_H
|
||||
#define BOUDINGVOLUMECIRCLE2_H
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "BoundingVolume.h"
|
||||
#include "../Circle2.h"
|
||||
|
||||
class BoundingVolumeCircle2 : public Circle2 {
|
||||
|
||||
public:
|
||||
|
||||
BoundingVolumeCircle2() {;}
|
||||
|
||||
BoundingVolumeCircle2(const Circle2& c) : Circle2(c) {;}
|
||||
|
||||
float getVolumeSize() const {
|
||||
return M_PI * (radius*radius);
|
||||
}
|
||||
|
||||
bool intersects(const Ray2 ray) const {
|
||||
return Circle2::intersects(ray);
|
||||
}
|
||||
|
||||
/** construct a volume around the given point-set */
|
||||
static BoundingVolumeCircle2 fromVertices(const std::vector<Point2>& verts) {
|
||||
BoundingVolumeCircle2 bvs;
|
||||
bvs.adjustToPointSet(verts);
|
||||
return bvs;
|
||||
}
|
||||
|
||||
static BoundingVolumeCircle2 join(const BoundingVolumeCircle2 a, const BoundingVolumeCircle2 b) {
|
||||
return BoundingVolumeCircle2(Circle2::join(a, b));
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
#endif // BOUDINGVOLUMECIRCLE2_H
|
||||
@@ -1,4 +0,0 @@
|
||||
#ifndef BOUNDINGVOLUMEHIERARCHY_H
|
||||
#define BOUNDINGVOLUMEHIERARCHY_H
|
||||
|
||||
#endif // BOUNDINGVOLUMEHIERARCHY_H
|
||||
@@ -5,13 +5,13 @@
|
||||
#include "../Sphere3.h"
|
||||
#include "../Point3.h"
|
||||
|
||||
class BoundingVolumeSphere : public BoundingVolume, public Sphere3 {
|
||||
class BoundingVolumeSphere3 : public BoundingVolume, public Sphere3 {
|
||||
|
||||
public:
|
||||
|
||||
BoundingVolumeSphere() {;}
|
||||
BoundingVolumeSphere3() {;}
|
||||
|
||||
BoundingVolumeSphere(const Sphere3& s) : Sphere3(s) {;}
|
||||
BoundingVolumeSphere3(const Sphere3& s) : Sphere3(s) {;}
|
||||
|
||||
float getVolumeSize() const {
|
||||
return (4.0f / 3.0f) * M_PI * (radius*radius*radius);
|
||||
@@ -27,25 +27,25 @@ public:
|
||||
|
||||
/** does the volume intersect with the given volume? */
|
||||
bool intersects(const BoundingVolume& other) const {
|
||||
const BoundingVolumeSphere& sphere = (const BoundingVolumeSphere&) other;
|
||||
const BoundingVolumeSphere3& sphere = (const BoundingVolumeSphere3&) other;
|
||||
return Sphere3::intersects(sphere);
|
||||
}
|
||||
|
||||
/** does the volume contain the given volume? */
|
||||
bool contains(const BoundingVolume& other) const {
|
||||
const BoundingVolumeSphere& sphere = (const BoundingVolumeSphere&) other;
|
||||
const BoundingVolumeSphere3& sphere = (const BoundingVolumeSphere3&) other;
|
||||
return Sphere3::contains(sphere);
|
||||
}
|
||||
|
||||
/** construct a volume around the given point-set */
|
||||
static BoundingVolumeSphere fromVertices(const std::vector<Point3>& verts) {
|
||||
BoundingVolumeSphere bvs;
|
||||
static BoundingVolumeSphere3 fromVertices(const std::vector<Point3>& verts) {
|
||||
BoundingVolumeSphere3 bvs;
|
||||
bvs.adjustToPointSet(verts);
|
||||
return bvs;
|
||||
}
|
||||
|
||||
static BoundingVolumeSphere join(const BoundingVolumeSphere a, const BoundingVolumeSphere b) {
|
||||
return BoundingVolumeSphere(Sphere3::join(a, b));
|
||||
static BoundingVolumeSphere3 join(const BoundingVolumeSphere3 a, const BoundingVolumeSphere3 b) {
|
||||
return BoundingVolumeSphere3(Sphere3::join(a, b));
|
||||
}
|
||||
|
||||
};
|
||||
@@ -54,8 +54,8 @@ Copyright: (C) Advanced Interfaces Group,
|
||||
#define TRUE 1
|
||||
#endif
|
||||
|
||||
#define LEFT 0
|
||||
#define RIGHT 1
|
||||
#define GPC_LEFT 0
|
||||
#define GPC_RIGHT 1
|
||||
|
||||
#define ABOVE 0
|
||||
#define BELOW 1
|
||||
@@ -504,8 +504,8 @@ static edge_node *build_lmt(lmt_node **lmt, sb_tree **sbtree,
|
||||
&(e[i + 1]) : NULL;
|
||||
e[i].pred= ((num_edges > 1) && (i > 0)) ? &(e[i - 1]) : NULL;
|
||||
e[i].next_bound= NULL;
|
||||
e[i].bside[CLIP]= (op == GPC_DIFF) ? RIGHT : LEFT;
|
||||
e[i].bside[SUBJ]= LEFT;
|
||||
e[i].bside[CLIP]= (op == GPC_DIFF) ? GPC_RIGHT : GPC_LEFT;
|
||||
e[i].bside[SUBJ]= GPC_LEFT;
|
||||
}
|
||||
insert_bound(bound_list(lmt, edge_table[min].vertex.y), e);
|
||||
}
|
||||
@@ -554,8 +554,8 @@ static edge_node *build_lmt(lmt_node **lmt, sb_tree **sbtree,
|
||||
&(e[i + 1]) : NULL;
|
||||
e[i].pred= ((num_edges > 1) && (i > 0)) ? &(e[i - 1]) : NULL;
|
||||
e[i].next_bound= NULL;
|
||||
e[i].bside[CLIP]= (op == GPC_DIFF) ? RIGHT : LEFT;
|
||||
e[i].bside[SUBJ]= LEFT;
|
||||
e[i].bside[CLIP]= (op == GPC_DIFF) ? GPC_RIGHT : GPC_LEFT;
|
||||
e[i].bside[SUBJ]= GPC_LEFT;
|
||||
}
|
||||
insert_bound(bound_list(lmt, edge_table[min].vertex.y), e);
|
||||
}
|
||||
@@ -736,7 +736,7 @@ static int count_contours(polygon_node *polygon)
|
||||
{
|
||||
/* Count the vertices in the current contour */
|
||||
nv= 0;
|
||||
for (v= polygon->proxy->v[LEFT]; v; v= v->next)
|
||||
for (v= polygon->proxy->v[GPC_LEFT]; v; v= v->next)
|
||||
nv++;
|
||||
|
||||
/* Record valid vertex counts in the active field */
|
||||
@@ -748,7 +748,7 @@ static int count_contours(polygon_node *polygon)
|
||||
else
|
||||
{
|
||||
/* Invalid contour: just free the heap */
|
||||
for (v= polygon->proxy->v[LEFT]; v; v= nextv)
|
||||
for (v= polygon->proxy->v[GPC_LEFT]; v; v= nextv)
|
||||
{
|
||||
nextv= v->next;
|
||||
FREE(v);
|
||||
@@ -770,10 +770,10 @@ static void add_left(polygon_node *p, double x, double y)
|
||||
nv->y= y;
|
||||
|
||||
/* Add vertex nv to the left end of the polygon's vertex list */
|
||||
nv->next= p->proxy->v[LEFT];
|
||||
nv->next= p->proxy->v[GPC_LEFT];
|
||||
|
||||
/* Update proxy->[LEFT] to point to nv */
|
||||
p->proxy->v[LEFT]= nv;
|
||||
/* Update proxy->[GPC_LEFT] to point to nv */
|
||||
p->proxy->v[GPC_LEFT]= nv;
|
||||
}
|
||||
|
||||
|
||||
@@ -787,8 +787,8 @@ static void merge_left(polygon_node *p, polygon_node *q, polygon_node *list)
|
||||
if (p->proxy != q->proxy)
|
||||
{
|
||||
/* Assign p's vertex list to the left end of q's list */
|
||||
p->proxy->v[RIGHT]->next= q->proxy->v[LEFT];
|
||||
q->proxy->v[LEFT]= p->proxy->v[LEFT];
|
||||
p->proxy->v[GPC_RIGHT]->next= q->proxy->v[GPC_LEFT];
|
||||
q->proxy->v[GPC_LEFT]= p->proxy->v[GPC_LEFT];
|
||||
|
||||
/* Redirect any p->proxy references to q->proxy */
|
||||
|
||||
@@ -815,10 +815,10 @@ static void add_right(polygon_node *p, double x, double y)
|
||||
nv->next= NULL;
|
||||
|
||||
/* Add vertex nv to the right end of the polygon's vertex list */
|
||||
p->proxy->v[RIGHT]->next= nv;
|
||||
p->proxy->v[GPC_RIGHT]->next= nv;
|
||||
|
||||
/* Update proxy->v[RIGHT] to point to nv */
|
||||
p->proxy->v[RIGHT]= nv;
|
||||
/* Update proxy->v[GPC_RIGHT] to point to nv */
|
||||
p->proxy->v[GPC_RIGHT]= nv;
|
||||
}
|
||||
|
||||
|
||||
@@ -832,8 +832,8 @@ static void merge_right(polygon_node *p, polygon_node *q, polygon_node *list)
|
||||
if (p->proxy != q->proxy)
|
||||
{
|
||||
/* Assign p's vertex list to the right end of q's list */
|
||||
q->proxy->v[RIGHT]->next= p->proxy->v[LEFT];
|
||||
q->proxy->v[RIGHT]= p->proxy->v[RIGHT];
|
||||
q->proxy->v[GPC_RIGHT]->next= p->proxy->v[GPC_LEFT];
|
||||
q->proxy->v[GPC_RIGHT]= p->proxy->v[GPC_RIGHT];
|
||||
|
||||
/* Redirect any p->proxy references to q->proxy */
|
||||
for (target= p->proxy; list; list= list->next)
|
||||
@@ -869,9 +869,9 @@ static void add_local_min(polygon_node **p, edge_node *edge,
|
||||
(*p)->active= TRUE;
|
||||
(*p)->next= existing_min;
|
||||
|
||||
/* Make v[LEFT] and v[RIGHT] point to new vertex nv */
|
||||
(*p)->v[LEFT]= nv;
|
||||
(*p)->v[RIGHT]= nv;
|
||||
/* Make v[GPC_LEFT] and v[GPC_RIGHT] point to new vertex nv */
|
||||
(*p)->v[GPC_LEFT]= nv;
|
||||
(*p)->v[GPC_RIGHT]= nv;
|
||||
|
||||
/* Assign polygon p to the edge */
|
||||
edge->outp[ABOVE]= *p;
|
||||
@@ -911,10 +911,10 @@ static void new_tristrip(polygon_node **tn, edge_node *edge,
|
||||
{
|
||||
MALLOC(*tn, sizeof(polygon_node), "tristrip node creation", polygon_node);
|
||||
(*tn)->next= NULL;
|
||||
(*tn)->v[LEFT]= NULL;
|
||||
(*tn)->v[RIGHT]= NULL;
|
||||
(*tn)->v[GPC_LEFT]= NULL;
|
||||
(*tn)->v[GPC_RIGHT]= NULL;
|
||||
(*tn)->active= 1;
|
||||
add_vertex(&((*tn)->v[LEFT]), x, y);
|
||||
add_vertex(&((*tn)->v[GPC_LEFT]), x, y);
|
||||
edge->outp[ABOVE]= *tn;
|
||||
}
|
||||
else
|
||||
@@ -1125,7 +1125,7 @@ void gpc_polygon_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
|
||||
polygon_node *out_poly= NULL, *p, *q, *poly, *npoly, *cf= NULL;
|
||||
vertex_node *vtx, *nv;
|
||||
h_state horiz[2];
|
||||
int in[2], exists[2], parity[2]= {LEFT, LEFT};
|
||||
int in[2], exists[2], parity[2]= {GPC_LEFT, GPC_LEFT};
|
||||
int c, v, contributing, search, scanbeam= 0, sbt_entries= 0;
|
||||
int vclass, bl, br, tl, tr;
|
||||
double *sbt= NULL, xb, px, yb, yt, dy, ix, iy;
|
||||
@@ -1178,7 +1178,7 @@ void gpc_polygon_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
|
||||
|
||||
/* Invert clip polygon for difference operation */
|
||||
if (op == GPC_DIFF)
|
||||
parity[CLIP]= RIGHT;
|
||||
parity[CLIP]= GPC_RIGHT;
|
||||
|
||||
local_min= lmt;
|
||||
|
||||
@@ -1721,7 +1721,7 @@ void gpc_polygon_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
|
||||
"vertex creation", gpc_vertex);
|
||||
|
||||
v= result->contour[c].num_vertices - 1;
|
||||
for (vtx= poly->proxy->v[LEFT]; vtx; vtx= nv)
|
||||
for (vtx= poly->proxy->v[GPC_LEFT]; vtx; vtx= nv)
|
||||
{
|
||||
nv= vtx->next;
|
||||
result->contour[c].vertex[v].x= vtx->x;
|
||||
@@ -1786,7 +1786,7 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
|
||||
vertex_node *lt, *ltn, *rt, *rtn;
|
||||
h_state horiz[2];
|
||||
vertex_type cft;
|
||||
int in[2], exists[2], parity[2]= {LEFT, LEFT};
|
||||
int in[2], exists[2], parity[2]= {GPC_LEFT, GPC_LEFT};
|
||||
int s, v, contributing, search, scanbeam= 0, sbt_entries= 0;
|
||||
int vclass, bl, br, tl, tr;
|
||||
double *sbt= NULL, xb, px, nx, yb, yt, dy, ix, iy;
|
||||
@@ -1831,7 +1831,7 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
|
||||
|
||||
/* Invert clip polygon for difference operation */
|
||||
if (op == GPC_DIFF)
|
||||
parity[CLIP]= RIGHT;
|
||||
parity[CLIP]= GPC_RIGHT;
|
||||
|
||||
local_min= lmt;
|
||||
|
||||
@@ -1990,17 +1990,17 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
|
||||
case ERI:
|
||||
edge->outp[ABOVE]= cf->outp[ABOVE];
|
||||
if (xb != cf->xb)
|
||||
VERTEX(edge, ABOVE, RIGHT, xb, yb);
|
||||
VERTEX(edge, ABOVE, GPC_RIGHT, xb, yb);
|
||||
cf= NULL;
|
||||
break;
|
||||
case ELI:
|
||||
VERTEX(edge, BELOW, LEFT, xb, yb);
|
||||
VERTEX(edge, BELOW, GPC_LEFT, xb, yb);
|
||||
edge->outp[ABOVE]= NULL;
|
||||
cf= edge;
|
||||
break;
|
||||
case EMX:
|
||||
if (xb != cf->xb)
|
||||
VERTEX(edge, BELOW, RIGHT, xb, yb);
|
||||
VERTEX(edge, BELOW, GPC_RIGHT, xb, yb);
|
||||
edge->outp[ABOVE]= NULL;
|
||||
cf= NULL;
|
||||
break;
|
||||
@@ -2008,11 +2008,11 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
|
||||
if (cft == LED)
|
||||
{
|
||||
if (cf->bot.y != yb)
|
||||
VERTEX(cf, BELOW, LEFT, cf->xb, yb);
|
||||
VERTEX(cf, BELOW, GPC_LEFT, cf->xb, yb);
|
||||
new_tristrip(&tlist, cf, cf->xb, yb);
|
||||
}
|
||||
edge->outp[ABOVE]= cf->outp[ABOVE];
|
||||
VERTEX(edge, ABOVE, RIGHT, xb, yb);
|
||||
VERTEX(edge, ABOVE, GPC_RIGHT, xb, yb);
|
||||
break;
|
||||
case ILI:
|
||||
new_tristrip(&tlist, edge, xb, yb);
|
||||
@@ -2023,33 +2023,33 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
|
||||
if (cft == LED)
|
||||
{
|
||||
if (cf->bot.y != yb)
|
||||
VERTEX(cf, BELOW, LEFT, cf->xb, yb);
|
||||
VERTEX(cf, BELOW, GPC_LEFT, cf->xb, yb);
|
||||
new_tristrip(&tlist, cf, cf->xb, yb);
|
||||
}
|
||||
VERTEX(edge, BELOW, RIGHT, xb, yb);
|
||||
VERTEX(edge, BELOW, GPC_RIGHT, xb, yb);
|
||||
edge->outp[ABOVE]= NULL;
|
||||
break;
|
||||
case IMX:
|
||||
VERTEX(edge, BELOW, LEFT, xb, yb);
|
||||
VERTEX(edge, BELOW, GPC_LEFT, xb, yb);
|
||||
edge->outp[ABOVE]= NULL;
|
||||
cft= IMX;
|
||||
break;
|
||||
case IMM:
|
||||
VERTEX(edge, BELOW, LEFT, xb, yb);
|
||||
VERTEX(edge, BELOW, GPC_LEFT, xb, yb);
|
||||
edge->outp[ABOVE]= cf->outp[ABOVE];
|
||||
if (xb != cf->xb)
|
||||
VERTEX(cf, ABOVE, RIGHT, xb, yb);
|
||||
VERTEX(cf, ABOVE, GPC_RIGHT, xb, yb);
|
||||
cf= edge;
|
||||
break;
|
||||
case EMM:
|
||||
VERTEX(edge, BELOW, RIGHT, xb, yb);
|
||||
VERTEX(edge, BELOW, GPC_RIGHT, xb, yb);
|
||||
edge->outp[ABOVE]= NULL;
|
||||
new_tristrip(&tlist, edge, xb, yb);
|
||||
cf= edge;
|
||||
break;
|
||||
case LED:
|
||||
if (edge->bot.y == yb)
|
||||
VERTEX(edge, BELOW, LEFT, xb, yb);
|
||||
VERTEX(edge, BELOW, GPC_LEFT, xb, yb);
|
||||
edge->outp[ABOVE]= edge->outp[BELOW];
|
||||
cf= edge;
|
||||
cft= LED;
|
||||
@@ -2060,21 +2060,21 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
|
||||
{
|
||||
if (cf->bot.y == yb)
|
||||
{
|
||||
VERTEX(edge, BELOW, RIGHT, xb, yb);
|
||||
VERTEX(edge, BELOW, GPC_RIGHT, xb, yb);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (edge->bot.y == yb)
|
||||
{
|
||||
VERTEX(cf, BELOW, LEFT, cf->xb, yb);
|
||||
VERTEX(edge, BELOW, RIGHT, xb, yb);
|
||||
VERTEX(cf, BELOW, GPC_LEFT, cf->xb, yb);
|
||||
VERTEX(edge, BELOW, GPC_RIGHT, xb, yb);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
VERTEX(edge, BELOW, RIGHT, xb, yb);
|
||||
VERTEX(edge, ABOVE, RIGHT, xb, yb);
|
||||
VERTEX(edge, BELOW, GPC_RIGHT, xb, yb);
|
||||
VERTEX(edge, ABOVE, GPC_RIGHT, xb, yb);
|
||||
}
|
||||
cf= NULL;
|
||||
break;
|
||||
@@ -2199,8 +2199,8 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
|
||||
if (p)
|
||||
{
|
||||
P_EDGE(prev_edge, e0, ABOVE, px, iy);
|
||||
VERTEX(prev_edge, ABOVE, LEFT, px, iy);
|
||||
VERTEX(e0, ABOVE, RIGHT, ix, iy);
|
||||
VERTEX(prev_edge, ABOVE, GPC_LEFT, px, iy);
|
||||
VERTEX(e0, ABOVE, GPC_RIGHT, ix, iy);
|
||||
e1->outp[ABOVE]= e0->outp[ABOVE];
|
||||
e0->outp[ABOVE]= NULL;
|
||||
}
|
||||
@@ -2209,8 +2209,8 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
|
||||
if (q)
|
||||
{
|
||||
N_EDGE(next_edge, e1, ABOVE, nx, iy);
|
||||
VERTEX(e1, ABOVE, LEFT, ix, iy);
|
||||
VERTEX(next_edge, ABOVE, RIGHT, nx, iy);
|
||||
VERTEX(e1, ABOVE, GPC_LEFT, ix, iy);
|
||||
VERTEX(next_edge, ABOVE, GPC_RIGHT, nx, iy);
|
||||
e0->outp[ABOVE]= e1->outp[ABOVE];
|
||||
e1->outp[ABOVE]= NULL;
|
||||
}
|
||||
@@ -2218,29 +2218,29 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
|
||||
case EMX:
|
||||
if (p && q)
|
||||
{
|
||||
VERTEX(e0, ABOVE, LEFT, ix, iy);
|
||||
VERTEX(e0, ABOVE, GPC_LEFT, ix, iy);
|
||||
e0->outp[ABOVE]= NULL;
|
||||
e1->outp[ABOVE]= NULL;
|
||||
}
|
||||
break;
|
||||
case IMN:
|
||||
P_EDGE(prev_edge, e0, ABOVE, px, iy);
|
||||
VERTEX(prev_edge, ABOVE, LEFT, px, iy);
|
||||
VERTEX(prev_edge, ABOVE, GPC_LEFT, px, iy);
|
||||
N_EDGE(next_edge, e1, ABOVE, nx, iy);
|
||||
VERTEX(next_edge, ABOVE, RIGHT, nx, iy);
|
||||
VERTEX(next_edge, ABOVE, GPC_RIGHT, nx, iy);
|
||||
new_tristrip(&tlist, prev_edge, px, iy);
|
||||
e1->outp[ABOVE]= prev_edge->outp[ABOVE];
|
||||
VERTEX(e1, ABOVE, RIGHT, ix, iy);
|
||||
VERTEX(e1, ABOVE, GPC_RIGHT, ix, iy);
|
||||
new_tristrip(&tlist, e0, ix, iy);
|
||||
next_edge->outp[ABOVE]= e0->outp[ABOVE];
|
||||
VERTEX(next_edge, ABOVE, RIGHT, nx, iy);
|
||||
VERTEX(next_edge, ABOVE, GPC_RIGHT, nx, iy);
|
||||
break;
|
||||
case ILI:
|
||||
if (p)
|
||||
{
|
||||
VERTEX(e0, ABOVE, LEFT, ix, iy);
|
||||
VERTEX(e0, ABOVE, GPC_LEFT, ix, iy);
|
||||
N_EDGE(next_edge, e1, ABOVE, nx, iy);
|
||||
VERTEX(next_edge, ABOVE, RIGHT, nx, iy);
|
||||
VERTEX(next_edge, ABOVE, GPC_RIGHT, nx, iy);
|
||||
e1->outp[ABOVE]= e0->outp[ABOVE];
|
||||
e0->outp[ABOVE]= NULL;
|
||||
}
|
||||
@@ -2248,9 +2248,9 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
|
||||
case IRI:
|
||||
if (q)
|
||||
{
|
||||
VERTEX(e1, ABOVE, RIGHT, ix, iy);
|
||||
VERTEX(e1, ABOVE, GPC_RIGHT, ix, iy);
|
||||
P_EDGE(prev_edge, e0, ABOVE, px, iy);
|
||||
VERTEX(prev_edge, ABOVE, LEFT, px, iy);
|
||||
VERTEX(prev_edge, ABOVE, GPC_LEFT, px, iy);
|
||||
e0->outp[ABOVE]= e1->outp[ABOVE];
|
||||
e1->outp[ABOVE]= NULL;
|
||||
}
|
||||
@@ -2258,40 +2258,40 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
|
||||
case IMX:
|
||||
if (p && q)
|
||||
{
|
||||
VERTEX(e0, ABOVE, RIGHT, ix, iy);
|
||||
VERTEX(e1, ABOVE, LEFT, ix, iy);
|
||||
VERTEX(e0, ABOVE, GPC_RIGHT, ix, iy);
|
||||
VERTEX(e1, ABOVE, GPC_LEFT, ix, iy);
|
||||
e0->outp[ABOVE]= NULL;
|
||||
e1->outp[ABOVE]= NULL;
|
||||
P_EDGE(prev_edge, e0, ABOVE, px, iy);
|
||||
VERTEX(prev_edge, ABOVE, LEFT, px, iy);
|
||||
VERTEX(prev_edge, ABOVE, GPC_LEFT, px, iy);
|
||||
new_tristrip(&tlist, prev_edge, px, iy);
|
||||
N_EDGE(next_edge, e1, ABOVE, nx, iy);
|
||||
VERTEX(next_edge, ABOVE, RIGHT, nx, iy);
|
||||
VERTEX(next_edge, ABOVE, GPC_RIGHT, nx, iy);
|
||||
next_edge->outp[ABOVE]= prev_edge->outp[ABOVE];
|
||||
VERTEX(next_edge, ABOVE, RIGHT, nx, iy);
|
||||
VERTEX(next_edge, ABOVE, GPC_RIGHT, nx, iy);
|
||||
}
|
||||
break;
|
||||
case IMM:
|
||||
if (p && q)
|
||||
{
|
||||
VERTEX(e0, ABOVE, RIGHT, ix, iy);
|
||||
VERTEX(e1, ABOVE, LEFT, ix, iy);
|
||||
VERTEX(e0, ABOVE, GPC_RIGHT, ix, iy);
|
||||
VERTEX(e1, ABOVE, GPC_LEFT, ix, iy);
|
||||
P_EDGE(prev_edge, e0, ABOVE, px, iy);
|
||||
VERTEX(prev_edge, ABOVE, LEFT, px, iy);
|
||||
VERTEX(prev_edge, ABOVE, GPC_LEFT, px, iy);
|
||||
new_tristrip(&tlist, prev_edge, px, iy);
|
||||
N_EDGE(next_edge, e1, ABOVE, nx, iy);
|
||||
VERTEX(next_edge, ABOVE, RIGHT, nx, iy);
|
||||
VERTEX(next_edge, ABOVE, GPC_RIGHT, nx, iy);
|
||||
e1->outp[ABOVE]= prev_edge->outp[ABOVE];
|
||||
VERTEX(e1, ABOVE, RIGHT, ix, iy);
|
||||
VERTEX(e1, ABOVE, GPC_RIGHT, ix, iy);
|
||||
new_tristrip(&tlist, e0, ix, iy);
|
||||
next_edge->outp[ABOVE]= e0->outp[ABOVE];
|
||||
VERTEX(next_edge, ABOVE, RIGHT, nx, iy);
|
||||
VERTEX(next_edge, ABOVE, GPC_RIGHT, nx, iy);
|
||||
}
|
||||
break;
|
||||
case EMM:
|
||||
if (p && q)
|
||||
{
|
||||
VERTEX(e0, ABOVE, LEFT, ix, iy);
|
||||
VERTEX(e0, ABOVE, GPC_LEFT, ix, iy);
|
||||
new_tristrip(&tlist, e1, ix, iy);
|
||||
e0->outp[ABOVE]= e1->outp[ABOVE];
|
||||
}
|
||||
@@ -2408,13 +2408,13 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
|
||||
v= 0;
|
||||
if (INVERT_TRISTRIPS)
|
||||
{
|
||||
lt= tn->v[RIGHT];
|
||||
rt= tn->v[LEFT];
|
||||
lt= tn->v[GPC_RIGHT];
|
||||
rt= tn->v[GPC_LEFT];
|
||||
}
|
||||
else
|
||||
{
|
||||
lt= tn->v[LEFT];
|
||||
rt= tn->v[RIGHT];
|
||||
lt= tn->v[GPC_LEFT];
|
||||
rt= tn->v[GPC_RIGHT];
|
||||
}
|
||||
while (lt || rt)
|
||||
{
|
||||
@@ -2442,12 +2442,12 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
|
||||
else
|
||||
{
|
||||
/* Invalid tristrip: just free the heap */
|
||||
for (lt= tn->v[LEFT]; lt; lt= ltn)
|
||||
for (lt= tn->v[GPC_LEFT]; lt; lt= ltn)
|
||||
{
|
||||
ltn= lt->next;
|
||||
FREE(lt);
|
||||
}
|
||||
for (rt= tn->v[RIGHT]; rt; rt=rtn)
|
||||
for (rt= tn->v[GPC_RIGHT]; rt; rt=rtn)
|
||||
{
|
||||
rtn= rt->next;
|
||||
FREE(rt);
|
||||
|
||||
3
main.cpp
3
main.cpp
@@ -36,7 +36,8 @@ int main(int argc, char** argv) {
|
||||
//::testing::GTEST_FLAG(filter) = "*Matrix4*";
|
||||
//::testing::GTEST_FLAG(filter) = "*Sphere3*";
|
||||
|
||||
::testing::GTEST_FLAG(filter) = "*RayTrace3*";
|
||||
::testing::GTEST_FLAG(filter) = "Geo_*";
|
||||
//::testing::GTEST_FLAG(filter) = "*RayTrace3*";
|
||||
//::testing::GTEST_FLAG(filter) = "*BVH*";
|
||||
|
||||
|
||||
|
||||
@@ -58,7 +58,7 @@ public:
|
||||
}
|
||||
|
||||
/** ctor with custom seed */
|
||||
DrawList(const uint32_t seed) : cumProbability(0), gen(defRndGen(seed)) {
|
||||
DrawList(const uint32_t seed) : cumProbability(0), defRndGen(seed), gen(defRndGen) {
|
||||
;
|
||||
}
|
||||
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
|
||||
#include "../../geo/Angle.h"
|
||||
|
||||
TEST(Angle, dir) {
|
||||
TEST(Geo_Angle, dir) {
|
||||
|
||||
// angle -> pointer -> angle
|
||||
ASSERT_NEAR(0, Angle::getRAD_2PI(Angle::getPointer(0)), 0.0001);
|
||||
@@ -14,7 +14,7 @@ TEST(Angle, dir) {
|
||||
|
||||
}
|
||||
|
||||
TEST(Angle, safe) {
|
||||
TEST(Geo_Angle, safe) {
|
||||
|
||||
ASSERT_EQ(0, (int)std::round(Angle::radToDeg(Angle::makeSafe_2PI(Angle::degToRad(0)))));
|
||||
ASSERT_EQ(0, (int)std::round(Angle::radToDeg(Angle::makeSafe_2PI(Angle::degToRad(360)))));
|
||||
@@ -35,7 +35,7 @@ TEST(Angle, safe) {
|
||||
|
||||
}
|
||||
|
||||
TEST(Angle, calc) {
|
||||
TEST(Geo_Angle, calc) {
|
||||
|
||||
ASSERT_EQ(0, (int)Angle::getDEG_360(0,0, +1,0)); // to the right
|
||||
ASSERT_EQ(90, (int)Angle::getDEG_360(0,0, 0,+1)); // upwards
|
||||
@@ -49,7 +49,7 @@ TEST(Angle, calc) {
|
||||
|
||||
}
|
||||
|
||||
TEST(Angle, signedDiff) {
|
||||
TEST(Geo_Angle, signedDiff) {
|
||||
|
||||
const float d = 0.00001f;
|
||||
ASSERT_NEAR(+M_PI/2, Angle::getSignedDiffRAD_2PI(0, M_PI/2), d); // CCW
|
||||
@@ -62,7 +62,7 @@ TEST(Angle, signedDiff) {
|
||||
|
||||
}
|
||||
|
||||
TEST(Angle, diff) {
|
||||
TEST(Geo_Angle, diff) {
|
||||
|
||||
const float r = Angle::getRAD_2PI(0,0, +1,0); // to the right
|
||||
const float u = Angle::getRAD_2PI(0,0, 0,+1); // upwards
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
|
||||
#include "../../geo/BBox2.h"
|
||||
|
||||
TEST(BBox, noIntersect) {
|
||||
TEST(Geo_BBox2, noIntersect) {
|
||||
|
||||
BBox2 bb(Point2(1,1), Point2(3,3));
|
||||
|
||||
@@ -21,7 +21,8 @@ TEST(BBox, noIntersect) {
|
||||
|
||||
}
|
||||
|
||||
TEST(BBox, noDirectIntersect) {
|
||||
/*
|
||||
TEST(Geo_BBox2, noDirectIntersect) {
|
||||
|
||||
BBox2 bb(Point2(1,1), Point2(3,3));
|
||||
|
||||
@@ -37,9 +38,10 @@ TEST(BBox, noDirectIntersect) {
|
||||
ASSERT_FALSE(bb.intersects(l4));
|
||||
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
TEST(BBox, positiveIntersect) {
|
||||
TEST(Geo_BBox2, positiveIntersect) {
|
||||
|
||||
BBox2 bb(Point2(1,1), Point2(3,3));
|
||||
|
||||
18
tests/geo/TestBBox3.cpp
Normal file
18
tests/geo/TestBBox3.cpp
Normal file
@@ -0,0 +1,18 @@
|
||||
#ifdef WITH_TESTS
|
||||
|
||||
#include "../Tests.h"
|
||||
|
||||
#include "../../geo/BBox3.h"
|
||||
|
||||
TEST(Geo_BBox3, noIntersect) {
|
||||
|
||||
BBox3 bb1(Point3(0,0,0), Point3(1,1,1));
|
||||
BBox3 bb2(Point3(1,1,1), Point3(2,3,4));
|
||||
|
||||
BBox3 joined = BBox3::join(bb1, bb2);
|
||||
ASSERT_EQ(Point3(2,3,4), joined.getMax());
|
||||
ASSERT_EQ(Point3(0,0,0), joined.getMin());
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
176
tests/geo/TestBVH2.cpp
Normal file
176
tests/geo/TestBVH2.cpp
Normal file
@@ -0,0 +1,176 @@
|
||||
#ifdef WITH_TESTS
|
||||
|
||||
#include "../Tests.h"
|
||||
|
||||
#include "../../geo/volume/BVH.h"
|
||||
#include "../../geo/volume/BVHDebug.h"
|
||||
|
||||
#include "../../geo/BBox2.h"
|
||||
#include "../../geo/Line2.h"
|
||||
|
||||
#include "../../floorplan/v2/Floorplan.h"
|
||||
#include "../../floorplan/v2/FloorplanReader.h"
|
||||
#include "../../wifi/estimate/ray3/ModelFactory.h"
|
||||
|
||||
struct WrapperBBox2 {
|
||||
|
||||
static std::vector<Point2> getVertices(const BBox2& bbox) {
|
||||
return {bbox.getMin(), bbox.getMax()};
|
||||
}
|
||||
|
||||
static std::vector<Point2> getDebugLines(const BBox2& bbox) {
|
||||
|
||||
Point2 p1(bbox.getMin().x, bbox.getMin().y);
|
||||
Point2 p2(bbox.getMax().x, bbox.getMin().y);
|
||||
Point2 p3(bbox.getMax().x, bbox.getMax().y);
|
||||
Point2 p4(bbox.getMin().x, bbox.getMax().y);
|
||||
|
||||
std::vector<Point2> res;
|
||||
res.push_back(p1); res.push_back(p2);
|
||||
res.push_back(p2); res.push_back(p3);
|
||||
res.push_back(p3); res.push_back(p4);
|
||||
res.push_back(p4); res.push_back(p1);
|
||||
return res;
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
struct WrapperLine2 {
|
||||
|
||||
static std::vector<Point2> getVertices(const Line2& l) {
|
||||
return {l.p1, l.p2};
|
||||
}
|
||||
|
||||
static std::vector<Point2> getDebugLines(const Line2& l) {
|
||||
return {l.p1, l.p2};
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
TEST(Geo_BVH2, tree) {
|
||||
|
||||
BVH3Debug<BBox3, BoundingVolumeSphere3, Wrapper> tree;
|
||||
|
||||
BBox3 bb1(Point3(0,0,0), Point3(1,1,1));
|
||||
tree.add(bb1);
|
||||
|
||||
BBox3 bb2(Point3(-1,-1,-1), Point3(0,0,0));
|
||||
tree.add(bb2);
|
||||
|
||||
tree.optimize();
|
||||
tree.show();
|
||||
|
||||
int i = 0; (void) i;
|
||||
|
||||
}
|
||||
|
||||
TEST(Geo_BVH2, tree2) {
|
||||
|
||||
BVH3Debug<BBox3, BoundingVolumeSphere3, Wrapper> tree;
|
||||
|
||||
BBox3 bb1(Point3(0,0,0), Point3(1,1,1));
|
||||
tree.add(bb1);
|
||||
|
||||
BBox3 bb2(Point3(-1,0,0), Point3(0,1,1));
|
||||
tree.add(bb2);
|
||||
|
||||
tree.optimize();
|
||||
tree.show();
|
||||
|
||||
int i = 0; (void) i;
|
||||
|
||||
}
|
||||
|
||||
TEST(Geo_BVH2, tree3) {
|
||||
|
||||
BVH3Debug<BBox3, BoundingVolumeSphere3, Wrapper> tree;
|
||||
|
||||
BBox3 bb1 = BBox3::around(Point3(+0.5, +0.5, 0.0), Point3(0.25, 0.25, 0.25));
|
||||
tree.add(bb1);
|
||||
|
||||
BBox3 bb2 = BBox3::around(Point3(-0.5, +0.5, 0.0), Point3(0.25, 0.25, 0.25));
|
||||
tree.add(bb2);
|
||||
|
||||
BBox3 bb3 = BBox3::around(Point3(-0.0, +0.5, 0.0), Point3(0.36, 0.36, 0.36));
|
||||
tree.add(bb3);
|
||||
|
||||
BBox3 bb4 = BBox3::around(Point3(-0.0, +0.0, 0.0), Point3(0.5, 0.5, 0.5));
|
||||
tree.add(bb4);
|
||||
|
||||
tree.optimize(1);
|
||||
tree.show();
|
||||
|
||||
tree.optimize(1);
|
||||
tree.show();
|
||||
|
||||
tree.optimize(1);
|
||||
tree.show();
|
||||
|
||||
int i = 0; (void) i;
|
||||
|
||||
}
|
||||
|
||||
TEST(Geo_BVH2, treeMap) {
|
||||
|
||||
std::string file = "/apps/SHL39.xml";
|
||||
Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(file);
|
||||
|
||||
ModelFactory fac(map);
|
||||
fac.setExportCeilings(false);
|
||||
fac.setFloors({map->floors[3]});
|
||||
std::vector<Obstacle3D> obs = fac.triangulize();
|
||||
|
||||
BVH3Debug<Obstacle3D, BoundingVolumeSphere3, WrapperObs3D> tree;
|
||||
|
||||
for (const Obstacle3D& o : obs) {
|
||||
tree.add(o);
|
||||
}
|
||||
|
||||
//tree.show(150);
|
||||
|
||||
//int rounds = tree.optimize();
|
||||
|
||||
for (int i = 0; i < 200; ++i) {
|
||||
tree.optimize(1);
|
||||
//if (i%3==0) {
|
||||
tree.show(250, false);
|
||||
//}
|
||||
}
|
||||
|
||||
int i = 0; (void) i;
|
||||
|
||||
}
|
||||
*/
|
||||
TEST(Geo_BVH2, treeRandom) {
|
||||
|
||||
//BVH2Debug<Line2, BoundingVolumeCircle2, WrapperLine2> tree;
|
||||
BVH2Debug<Line2, BoundingVolumeAABB2, WrapperLine2> tree;
|
||||
|
||||
std::minstd_rand gen;
|
||||
std::uniform_real_distribution<float> dPos(-4.0, +4.0);
|
||||
std::uniform_real_distribution<float> dDir(+0.1, +0.5);
|
||||
|
||||
for (int i = 0; i < 50; ++i) {
|
||||
const Point2 pos(dPos(gen), dPos(gen));
|
||||
const Point2 dir(dDir(gen), dDir(gen));
|
||||
const Line2 line(pos, pos+dir);
|
||||
tree.add(line);
|
||||
}
|
||||
|
||||
tree.show();
|
||||
|
||||
if (1 == 0) {
|
||||
for (int i = 0; i < 100; ++i) {
|
||||
tree.optimize(1);
|
||||
tree.show();
|
||||
usleep(1000*100);
|
||||
}
|
||||
}
|
||||
int i = 0; (void) i;
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
@@ -77,7 +77,7 @@ struct WrapperObs3D {
|
||||
|
||||
TEST(BVH, tree) {
|
||||
|
||||
BVHDebug<BBox3, BoundingVolumeSphere, Wrapper> tree;
|
||||
BVH3Debug<BBox3, BoundingVolumeSphere3, Wrapper> tree;
|
||||
|
||||
BBox3 bb1(Point3(0,0,0), Point3(1,1,1));
|
||||
tree.add(bb1);
|
||||
@@ -94,7 +94,7 @@ TEST(BVH, tree) {
|
||||
|
||||
TEST(BVH, tree2) {
|
||||
|
||||
BVHDebug<BBox3, BoundingVolumeSphere, Wrapper> tree;
|
||||
BVH3Debug<BBox3, BoundingVolumeSphere3, Wrapper> tree;
|
||||
|
||||
BBox3 bb1(Point3(0,0,0), Point3(1,1,1));
|
||||
tree.add(bb1);
|
||||
@@ -111,7 +111,7 @@ TEST(BVH, tree2) {
|
||||
|
||||
TEST(BVH, tree3) {
|
||||
|
||||
BVHDebug<BBox3, BoundingVolumeSphere, Wrapper> tree;
|
||||
BVH3Debug<BBox3, BoundingVolumeSphere3, Wrapper> tree;
|
||||
|
||||
BBox3 bb1 = BBox3::around(Point3(+0.5, +0.5, 0.0), Point3(0.25, 0.25, 0.25));
|
||||
tree.add(bb1);
|
||||
@@ -148,7 +148,7 @@ TEST(BVH, treeMap) {
|
||||
fac.setFloors({map->floors[3]});
|
||||
std::vector<Obstacle3D> obs = fac.triangulize();
|
||||
|
||||
BVHDebug<Obstacle3D, BoundingVolumeSphere, WrapperObs3D> tree;
|
||||
BVH3Debug<Obstacle3D, BoundingVolumeSphere3, WrapperObs3D> tree;
|
||||
|
||||
for (const Obstacle3D& o : obs) {
|
||||
tree.add(o);
|
||||
@@ -171,7 +171,7 @@ TEST(BVH, treeMap) {
|
||||
|
||||
TEST(BVH, treeRandom) {
|
||||
|
||||
BVHDebug<BBox3, BoundingVolumeSphere, Wrapper> tree;
|
||||
BVH3Debug<BBox3, BoundingVolumeSphere3, Wrapper> tree;
|
||||
|
||||
std::minstd_rand gen;
|
||||
std::uniform_real_distribution<float> dPos(-4.0, +4.0);
|
||||
85
tests/geo/TestCircle2.cpp
Normal file
85
tests/geo/TestCircle2.cpp
Normal file
@@ -0,0 +1,85 @@
|
||||
#ifdef WITH_TESTS
|
||||
|
||||
#include "../Tests.h"
|
||||
|
||||
#include "../../geo/Circle2.h"
|
||||
|
||||
TEST(Geo_Circle2, intersect) {
|
||||
|
||||
Circle2 c1(Point2(3,2), 1.0);
|
||||
|
||||
// left of circle
|
||||
Ray2 r1(Point2(1,0), Point2(0,1));
|
||||
ASSERT_FALSE(c1.intersects(r1));
|
||||
|
||||
// right of circle
|
||||
Ray2 r2(Point2(5,0), Point2(0,1));
|
||||
ASSERT_FALSE(c1.intersects(r2));
|
||||
|
||||
|
||||
// through circle (from bottom)
|
||||
Ray2 r3(Point2(3,0), Point2(0,1));
|
||||
ASSERT_TRUE(c1.intersects(r3));
|
||||
// through circle (from bottom)
|
||||
Ray2 r4(Point2(3.5,0), Point2(0,1));
|
||||
ASSERT_TRUE(c1.intersects(r4));
|
||||
|
||||
// within circle
|
||||
Ray2 r5(Point2(3,2), Point2(0,1));
|
||||
ASSERT_TRUE(c1.intersects(r5));
|
||||
|
||||
|
||||
// through circle (from left)
|
||||
Ray2 r6(Point2(0,2), Point2(1,0));
|
||||
ASSERT_TRUE(c1.intersects(r6));
|
||||
// through circle (from right)
|
||||
Ray2 r7(Point2(10,2), Point2(-1,0));
|
||||
ASSERT_TRUE(c1.intersects(r7));
|
||||
// through circle (from top)
|
||||
Ray2 r8(Point2(3,10), Point2(0,-1));
|
||||
ASSERT_TRUE(c1.intersects(r8));
|
||||
|
||||
|
||||
}
|
||||
|
||||
TEST(Geo_Circle2, contains) {
|
||||
|
||||
Circle2 c(Point2(0,0), 1.01);
|
||||
|
||||
ASSERT_TRUE(c.contains(Point2(+1,0)));
|
||||
ASSERT_TRUE(c.contains(Point2(-1,0)));
|
||||
|
||||
ASSERT_TRUE(c.contains(Point2(0,+1)));
|
||||
ASSERT_TRUE(c.contains(Point2(0,-1)));
|
||||
|
||||
ASSERT_FALSE(c.contains(Point2(+1,+1)));
|
||||
ASSERT_FALSE(c.contains(Point2(-1,-1)));
|
||||
|
||||
}
|
||||
|
||||
TEST(Geo_Circle2, join) {
|
||||
|
||||
// no overlap
|
||||
Circle2 a1(Point2(-1,0), 0.5);
|
||||
Circle2 a2(Point2(+1,0), 0.5);
|
||||
Circle2 a3 = Circle2::join(a1,a2);
|
||||
ASSERT_EQ(Point2(0,0), a3.center);
|
||||
ASSERT_NEAR(1.5, a3.radius, 0.01);
|
||||
|
||||
// overlap
|
||||
Circle2 b1(Point2(0,+1), 1.5);
|
||||
Circle2 b2(Point2(0,-1), 1.5);
|
||||
Circle2 b3 = Circle2::join(b1,b2);
|
||||
ASSERT_EQ(Point2(0,0), b3.center);
|
||||
ASSERT_NEAR(2.5, b3.radius, 0.01);
|
||||
|
||||
// within
|
||||
Circle2 c1(Point2(0,+1), 3.0);
|
||||
Circle2 c2(Point2(0,-1), 1.0);
|
||||
Circle2 c3 = Circle2::join(c1,c2);
|
||||
ASSERT_EQ(c1.center, c3.center);
|
||||
ASSERT_NEAR(c1.radius, c3.radius, 0.01);
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
@@ -3,7 +3,7 @@
|
||||
#include "../Tests.h"
|
||||
#include "../../geo/Heading.h"
|
||||
|
||||
TEST(Heading, diff) {
|
||||
TEST(Geo_Heading, diff) {
|
||||
|
||||
// 180 degree turn
|
||||
{
|
||||
@@ -26,7 +26,7 @@ TEST(Heading, diff) {
|
||||
|
||||
}
|
||||
|
||||
TEST(Heading, mod) {
|
||||
TEST(Geo_Heading, mod) {
|
||||
|
||||
const float d = 0.0001;
|
||||
|
||||
@@ -36,7 +36,7 @@ TEST(Heading, mod) {
|
||||
|
||||
}
|
||||
|
||||
TEST(Heading, ctor) {
|
||||
TEST(Geo_Heading, ctor) {
|
||||
|
||||
// OK
|
||||
Heading(0);
|
||||
@@ -54,7 +54,7 @@ TEST(Heading, ctor) {
|
||||
|
||||
}
|
||||
|
||||
TEST(Heading, eq) {
|
||||
TEST(Geo_Heading, eq) {
|
||||
|
||||
ASSERT_EQ(Heading(0), Heading(0));
|
||||
ASSERT_EQ(Heading(1), Heading(1));
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
#include "../Tests.h"
|
||||
#include "../../geo/Length.h"
|
||||
|
||||
TEST(Length, float) {
|
||||
TEST(Geo_Length, float) {
|
||||
|
||||
static constexpr float delta = 0.00001;
|
||||
|
||||
@@ -24,7 +24,7 @@ TEST(Length, float) {
|
||||
|
||||
}
|
||||
|
||||
TEST(Length, int) {
|
||||
TEST(Geo_Length, int) {
|
||||
|
||||
LengthI l1 = LengthI::m(1.0);
|
||||
ASSERT_EQ(1, l1.m());
|
||||
|
||||
23
tests/geo/TestPoint2.cpp
Normal file
23
tests/geo/TestPoint2.cpp
Normal file
@@ -0,0 +1,23 @@
|
||||
#ifdef WITH_TESTS
|
||||
|
||||
#include "../Tests.h"
|
||||
#include "../../geo/Point2.h"
|
||||
|
||||
TEST(Geo_Point2, math) {
|
||||
|
||||
Point2 p1(1,2);
|
||||
p1 += Point2(2,3);
|
||||
ASSERT_EQ(p1, Point2(3,5));
|
||||
|
||||
Point2 p2 = Point2(-2,-1) + p1;
|
||||
ASSERT_EQ(p2, Point2(1, 4));
|
||||
|
||||
p2 -= Point2(1, 2);
|
||||
ASSERT_EQ(p2, Point2(0,2));
|
||||
|
||||
Point2 p3 = Point2(1,2)*2;
|
||||
ASSERT_EQ(p3, Point2(2,4));
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
@@ -3,7 +3,7 @@
|
||||
#include "../Tests.h"
|
||||
#include "../../geo/Point3.h"
|
||||
|
||||
TEST(Point3, math) {
|
||||
TEST(Geo_Point3, math) {
|
||||
|
||||
Point3 p1(1,2,3);
|
||||
p1 += Point3(2,3,4);
|
||||
@@ -4,7 +4,7 @@
|
||||
|
||||
#include "../../geo/Sphere3.h"
|
||||
|
||||
TEST(Sphere3, contains) {
|
||||
TEST(Geo_Sphere3, contains) {
|
||||
|
||||
Sphere3 a(Point3(0,0,0), 10);
|
||||
|
||||
@@ -30,31 +30,31 @@ TEST(Sphere3, contains) {
|
||||
|
||||
}
|
||||
|
||||
TEST(Sphere3, join) {
|
||||
TEST(Geo_Sphere3, join) {
|
||||
|
||||
// no overlap
|
||||
Sphere3 a1(Point3(-1,0,0), 1);
|
||||
Sphere3 a2(Point3(+1,0,0), 1);
|
||||
Sphere3 a3 = Sphere3::join(a1, a2);
|
||||
ASSERT_EQ(Point3(0,0,0), a3.center);
|
||||
ASSERT_EQ(2, a3.radius);
|
||||
ASSERT_NEAR(2, a3.radius, 0.001);
|
||||
|
||||
// overlap
|
||||
Sphere3 b1(Point3(-1,0,0), 1.5);
|
||||
Sphere3 b2(Point3(+1,0,0), 1.5);
|
||||
Sphere3 b3 = Sphere3::join(b1, b2);
|
||||
ASSERT_EQ(Point3(0,0,0), b3.center);
|
||||
ASSERT_EQ(2.5, b3.radius);
|
||||
ASSERT_NEAR(2.5, b3.radius, 0.001);
|
||||
|
||||
// fully within
|
||||
Sphere3 c1(Point3(-1,0,0), 3.6);
|
||||
Sphere3 c2(Point3(+1,0,0), 1.5);
|
||||
Sphere3 c3 = Sphere3::join(c1, c2);
|
||||
ASSERT_EQ(c1.center, c3.center);
|
||||
ASSERT_EQ(c1.radius, c3.radius);
|
||||
ASSERT_NEAR(c1.radius, c3.radius, 0.001);
|
||||
Sphere3 c4 = Sphere3::join(c2, c1);
|
||||
ASSERT_EQ(c1.center, c4.center);
|
||||
ASSERT_EQ(c1.radius, c4.radius);
|
||||
ASSERT_NEAR(c1.radius, c4.radius, 0.001);
|
||||
|
||||
}
|
||||
|
||||
|
||||
@@ -5,7 +5,7 @@
|
||||
|
||||
// https://stackoverflow.com/questions/17458562/efficient-aabb-triangle-intersection-in-c-sharp
|
||||
// http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/code/tribox3.txt
|
||||
TEST(Triangle3, intersect) {
|
||||
TEST(Geo_Triangle3, intersect) {
|
||||
|
||||
Point3 dst;
|
||||
|
||||
|
||||
37
tests/ray/TestRayTrace2.cpp
Normal file
37
tests/ray/TestRayTrace2.cpp
Normal file
@@ -0,0 +1,37 @@
|
||||
#ifdef WITH_TESTS
|
||||
|
||||
#include "../Tests.h"
|
||||
#include "../../wifi/estimate/ray2d/WiFiRayTrace2D.h"
|
||||
#include "../../floorplan/v2/FloorplanReader.h"
|
||||
#include <fstream>
|
||||
|
||||
TEST(RayTrace2, test) {
|
||||
|
||||
//std::string file = "/mnt/data/workspaces/raytest2.xml";
|
||||
//Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(file);
|
||||
//Floorplan::AccessPoint* ap = map->floors[0]->accesspoints[0];
|
||||
|
||||
//std::string file = "/apps/SHL39.xml";
|
||||
std::string file = "/mnt/data/workspaces/IndoorMap/maps/SHL39.xml";
|
||||
Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(file);
|
||||
Floorplan::Floor* floor = map->floors[0];
|
||||
Floorplan::AccessPoint* ap = floor->accesspoints[4];
|
||||
|
||||
// ModelFactory fac(map);
|
||||
// std::ofstream outOBJ("/tmp/vm/map.obj");
|
||||
// outOBJ << fac.toOBJ();
|
||||
// outOBJ.close();
|
||||
|
||||
const int gs_cm = 50;
|
||||
|
||||
WiFiRaytrace2D rt(floor, gs_cm, ap->pos.xy());
|
||||
|
||||
std::chrono::time_point<std::chrono::high_resolution_clock> start = std::chrono::high_resolution_clock::now();
|
||||
const DataMapSignal& dms = rt.estimate();
|
||||
std::chrono::time_point<std::chrono::high_resolution_clock> end = std::chrono::high_resolution_clock::now();
|
||||
auto result = std::chrono::duration_cast<std::chrono::milliseconds>(end-start).count();
|
||||
std::cout << "it took: " << result << " msec" << std::endl;
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
@@ -12,7 +12,8 @@ TEST(RayTrace3, test) {
|
||||
//Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(file);
|
||||
//Floorplan::AccessPoint* ap = map->floors[0]->accesspoints[0];
|
||||
|
||||
std::string file = "/apps/SHL39.xml";
|
||||
//std::string file = "/apps/SHL39.xml";
|
||||
std::string file = "/mnt/data/workspaces/IndoorMap/maps/SHL39.xml";
|
||||
Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(file);
|
||||
Floorplan::AccessPoint* ap = map->floors[0]->accesspoints[4];
|
||||
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
|
||||
#include "../../../geo/BBox2.h"
|
||||
#include <vector>
|
||||
#include <functional>
|
||||
|
||||
template <typename T> class DataMap {
|
||||
|
||||
|
||||
@@ -1,24 +0,0 @@
|
||||
#ifndef RAY2_H
|
||||
#define RAY2_H
|
||||
|
||||
#include "../../../geo/Point2.h"
|
||||
|
||||
struct Ray2 {
|
||||
|
||||
/** starting position */
|
||||
Point2 start;
|
||||
|
||||
/** ray direction */
|
||||
Point2 dir;
|
||||
|
||||
/** empty ctor */
|
||||
Ray2() {;}
|
||||
|
||||
/** ctor */
|
||||
Ray2(const Point2 start, const Point2 dir) : start(start), dir(dir.normalized()) {
|
||||
;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
#endif // RAY2_H
|
||||
@@ -4,12 +4,14 @@
|
||||
#include "../../../geo/Point2.h"
|
||||
#include "../../../geo/Line2.h"
|
||||
#include "../../../geo/BBox2.h"
|
||||
#include "../../../geo/Ray2.h"
|
||||
|
||||
#include "../../../floorplan/v2/Floorplan.h"
|
||||
#include "../../../floorplan/v2/FloorplanHelper.h"
|
||||
|
||||
#include "../../../geo/volume/BVHDebug.h"
|
||||
|
||||
#include "DataMap2.h"
|
||||
#include "Ray2.h"
|
||||
#include "MaterialOptions.h"
|
||||
|
||||
#include <random>
|
||||
@@ -24,6 +26,38 @@
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
struct Obstacle2D {
|
||||
Floorplan::Material mat;
|
||||
Line2 line;
|
||||
Obstacle2D(Floorplan::Material mat, Line2 line) : mat(mat), line(line) {;}
|
||||
};
|
||||
|
||||
|
||||
struct Obstacle2DWrapper {
|
||||
static std::vector<Point2> getVertices(const Obstacle2D& obs) {
|
||||
return {obs.line.p1, obs.line.p2};
|
||||
}
|
||||
|
||||
static std::vector<Point2> getDebugLines(const Obstacle2D& obs) {
|
||||
return {obs.line.p1, obs.line.p2};
|
||||
}
|
||||
};
|
||||
|
||||
struct Hit {
|
||||
const Obstacle2D* obstacle;
|
||||
float dist;
|
||||
Point2 pos;
|
||||
Point2 normal;
|
||||
Floorplan::Material material;
|
||||
bool stopHere = false;
|
||||
Hit() {;}
|
||||
Hit(const float dist, const Point2 pos, const Point2 normal) : dist(dist), pos(pos), normal(normal) {;}
|
||||
};
|
||||
|
||||
struct StateRay2 : public Ray2 {
|
||||
|
||||
/** already travelled distance from the AP (by all previous rays */
|
||||
@@ -32,7 +66,7 @@ struct StateRay2 : public Ray2 {
|
||||
/** attenuation taken since the start */
|
||||
float totalAttenuation;
|
||||
|
||||
void* lastObstacle;
|
||||
const Obstacle2D* lastObstacle;
|
||||
int depth = 0;
|
||||
|
||||
/** empty ctor */
|
||||
@@ -51,17 +85,6 @@ struct StateRay2 : public Ray2 {
|
||||
|
||||
};
|
||||
|
||||
struct Hit {
|
||||
void* obstacle;
|
||||
float dist;
|
||||
Point2 pos;
|
||||
Point2 normal;
|
||||
Floorplan::Material material;
|
||||
bool stopHere = false;
|
||||
Hit() {;}
|
||||
Hit(const float dist, const Point2 pos, const Point2 normal) : dist(dist), pos(pos), normal(normal) {;}
|
||||
};
|
||||
|
||||
|
||||
|
||||
class WiFiRaytrace2D {
|
||||
@@ -72,11 +95,13 @@ private:
|
||||
BBox2 bbox;
|
||||
Point2 apPos;
|
||||
|
||||
BVH2Debug<Obstacle2D, BoundingVolumeCircle2, Obstacle2DWrapper> tree;
|
||||
|
||||
DataMapSignal dm;
|
||||
|
||||
struct Limit {
|
||||
static constexpr int RAYS = 2000;
|
||||
static constexpr int HITS = 11;
|
||||
static constexpr int HITS = 25;
|
||||
static constexpr float RSSI = -110;
|
||||
};
|
||||
|
||||
@@ -94,6 +119,34 @@ public:
|
||||
// allocate
|
||||
dm.resize(bbox, gs);
|
||||
|
||||
// build tree
|
||||
for (Floorplan::FloorObstacle* fo : floor->obstacles) {
|
||||
|
||||
const Floorplan::FloorObstacleLine* line = dynamic_cast<Floorplan::FloorObstacleLine*>(fo);
|
||||
const Floorplan::FloorObstacleDoor* door = dynamic_cast<Floorplan::FloorObstacleDoor*>(fo);
|
||||
|
||||
if (line) {
|
||||
Obstacle2D obs(line->material, Line2(line->from, line->to));
|
||||
tree.add(obs, true);
|
||||
} else if (door) {
|
||||
Obstacle2D obs(door->material, Line2(door->from, door->to));
|
||||
tree.add(obs, true);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// for (int i = 0; i < 200; ++i) {
|
||||
// tree.optimize(1);
|
||||
// tree.show(1500, false);
|
||||
// usleep(1000*100);
|
||||
// }
|
||||
|
||||
// tree.show();
|
||||
tree.optimize(250);
|
||||
// int depth = tree.getDepth();
|
||||
tree.show(1500,false);
|
||||
|
||||
|
||||
}
|
||||
|
||||
const DataMapSignal& estimate() {
|
||||
@@ -139,17 +192,13 @@ private:
|
||||
|
||||
// continue?
|
||||
if (hit.stopHere) {return;}
|
||||
//const float curLength = ray.totalLength + hit.dist;
|
||||
//if (curLength > 55) {return;}
|
||||
if (ray.getRSSI(hit.dist) < Limit::RSSI) {return;}
|
||||
if (ray.depth > Limit::HITS) {return;}
|
||||
|
||||
|
||||
// apply effects
|
||||
//reflected(ray, hit);
|
||||
reflected(ray, hit);
|
||||
shadowed(ray, hit);
|
||||
|
||||
|
||||
}
|
||||
|
||||
static inline float getAttenuation(const Hit& h) {
|
||||
@@ -208,43 +257,46 @@ private:
|
||||
}
|
||||
|
||||
|
||||
static inline void hitTest(const Line2& longRay, const Obstacle2D& obs, Hit& nearest) {
|
||||
|
||||
Hit getNearestHit(const StateRay2& ray) {
|
||||
const float minDist = 0.01; // prevent errors hitting the same obstacle twice
|
||||
|
||||
// do not hit the last obstacle again
|
||||
//if (ray.lastObstacle == fo) {continue;}
|
||||
|
||||
// get the line
|
||||
Point2 hit;
|
||||
if (obs.line.getSegmentIntersection(longRay, hit)) {
|
||||
const float dist = hit.getDistance(longRay.p1);
|
||||
if (dist > minDist && dist < nearest.dist) {
|
||||
nearest.obstacle = &obs;
|
||||
nearest.dist = dist;
|
||||
nearest.pos = hit;
|
||||
nearest.normal = (obs.line.p2 - obs.line.p1).perpendicular().normalized();
|
||||
nearest.material = obs.mat;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
Hit getNearestHit(const StateRay2& ray) const {
|
||||
|
||||
Assert::isNear(1.0f, ray.dir.length(), 0.01f, "not normalized!");
|
||||
|
||||
const Line2 longRay(ray.start, ray.start + ray.dir*100);
|
||||
const Line2 longRay(ray.start, ray.start + ray.dir*1000);
|
||||
|
||||
const float minDist = 0;//0.01; // prevent errors hitting the same obstacle twice
|
||||
//const float minDist = 0;//0.01; // prevent errors hitting the same obstacle twice
|
||||
const float MAX = 999999;
|
||||
Hit nearest; nearest.dist = MAX;
|
||||
|
||||
// check intersection with walls
|
||||
for (Floorplan::FloorObstacle* fo : floor->obstacles) {
|
||||
//int hits = 0;
|
||||
|
||||
// do not hit the last obstacle again
|
||||
if (ray.lastObstacle == fo) {continue;}
|
||||
const auto onHit = [longRay, &nearest] (const Obstacle2D& obs) {
|
||||
//++hits;
|
||||
hitTest(longRay, obs, nearest);
|
||||
};
|
||||
|
||||
// get the line
|
||||
const Floorplan::FloorObstacleLine* line = dynamic_cast<Floorplan::FloorObstacleLine*>(fo);
|
||||
const Floorplan::FloorObstacleDoor* door = dynamic_cast<Floorplan::FloorObstacleDoor*>(fo);
|
||||
if (!line && !door) {continue;}
|
||||
Line2 obstacle;
|
||||
if (line) {obstacle = Line2(line->from, line->to);}
|
||||
if (door) {obstacle = Line2(door->from, door->to);}
|
||||
|
||||
Point2 hit;
|
||||
if (obstacle.getSegmentIntersection(longRay, hit)) {
|
||||
const float dist = hit.getDistance(ray.start);
|
||||
if (dist > minDist && dist < nearest.dist) {
|
||||
nearest.obstacle = fo;
|
||||
nearest.dist = dist;
|
||||
nearest.pos = hit;
|
||||
nearest.normal = (obstacle.p2 - obstacle.p1).perpendicular().normalized();
|
||||
nearest.material = fo->material;
|
||||
}
|
||||
}
|
||||
}
|
||||
tree.getHits(ray, onHit);
|
||||
|
||||
// no hit with floorplan: limit to bounding-box!
|
||||
if (nearest.dist == MAX) {
|
||||
|
||||
@@ -70,6 +70,7 @@ struct StateRay3 : public Ray3 {
|
||||
|
||||
StateRay3 leave(const Point3 hitPos, const Obstacle3D* obs) const {
|
||||
|
||||
(void) obs;
|
||||
StateRay3 next = getNext(hitPos);
|
||||
next.isWithin = nullptr;
|
||||
return next;
|
||||
@@ -173,7 +174,7 @@ private:
|
||||
|
||||
DataMap3Signal dm;
|
||||
|
||||
BVHDebug<Obstacle3D, BoundingVolumeSphere, Obstacle3DWrapper> tree;
|
||||
BVH3Debug<Obstacle3D, BoundingVolumeSphere3, Obstacle3DWrapper> tree;
|
||||
|
||||
struct Limit {
|
||||
static constexpr int RAYS = 15000;
|
||||
|
||||
Reference in New Issue
Block a user