worked on 2D/3D raytracing

adjusted BVH
improved 2D/3D BVH
new bounding volumes
new test cases
renamed some test-cases for grouping reasons
made GPC header-only using slight adjustments
This commit is contained in:
2017-09-13 08:08:00 +02:00
parent c19d18a3a6
commit 686151b511
38 changed files with 1257 additions and 253 deletions

View File

@@ -75,8 +75,8 @@ ADD_DEFINITIONS(
-fstack-protector-all
-g3
# -O0
-O2
-O0
#-O2
-march=native
-DWITH_TESTS

View File

@@ -1,8 +1,9 @@
#ifndef BBOX2_H
#define BBOX2_H
#ifndef GEO_BBOX2_H
#define GEO_BBOX2_H
#include "Point2.h"
#include "Line2.h"
#include <vector>
class BBox2 {
@@ -105,6 +106,21 @@ public:
p2 += Point2(val, val); // increase maximum
}
/** grow the bbox by the amount given for each dimension */
void growRel(const float val) {
const Point2 center = (p1+p2)/2;
p1 += (p1-center)*val; // decrease minimum
p2 += (p2-center)*val; // increase maximum
}
/** combine two bboxes */
static BBox2 join(const BBox2& bb1, const BBox2& bb2) {
const Point2 min( std::min(bb1.p1.x, bb2.p1.x), std::min(bb1.p1.y, bb2.p1.y) );
const Point2 max( std::max(bb1.p2.x, bb2.p2.x), std::max(bb1.p2.y, bb2.p2.y) );
return BBox2(min, max);
}
};
#endif // BBOX2_H
#endif // GEO_BBOX2_H

View File

@@ -103,6 +103,13 @@ public:
return true;
}
/** combine two bboxes */
static BBox3 join(const BBox3& bb1, const BBox3& bb2) {
const Point3 min( std::min(bb1.p1.x, bb2.p1.x), std::min(bb1.p1.y, bb2.p1.y), std::min(bb1.p1.z, bb2.p1.z) );
const Point3 max( std::max(bb1.p2.x, bb2.p2.x), std::max(bb1.p2.y, bb2.p2.y), std::max(bb1.p2.z, bb2.p2.z) );
return BBox3(min,max);
}
};
#endif // BBOX3_H

304
geo/Circle2.h Normal file
View File

@@ -0,0 +1,304 @@
#ifndef CIRCLE2_H
#define CIRCLE2_H
#include <vector>
#include "Point2.h"
#include "Ray2.h"
#include "../Assertions.h"
//#include <KLib/misc/gnuplot/Gnuplot.h>
//#include <KLib/misc/gnuplot/GnuplotPlot.h>
//#include <KLib/misc/gnuplot/GnuplotPlotElementLines.h>
//#include <KLib/misc/gnuplot/GnuplotPlotElementPoints.h>
struct Circle2 {
Point2 center;
float radius;
public:
/** empty ctor */
Circle2() : center(), radius(0) {;}
/** ctor */
Circle2(const Point2 center, const float radius) : center(center), radius(radius) {;}
/** does this circle contain the given point? */
bool contains(const Point2 p) const {
return center.getDistance(p) <= radius;
}
/** does this circle contain the given point? */
bool containsAll(const std::vector<Point2>& pts) const {
for (const Point2& p : pts) {
if (!contains(p)) {return false;}
}
return true;
}
/** get a point on the circle for the given radians */
Point2 getPointAt(const float rad) const {
return center + Point2(std::cos(rad), std::sin(rad)) * radius;
}
/** does this circle contain the given circle? */
bool contains(const Circle2 c) const {
return (center.getDistance(c.center)+c.radius) <= radius;
}
/** does this circle intersect with the given ray? */
bool intersects(const Ray2 ray) const {
// https://math.stackexchange.com/questions/311921/get-location-of-vector-circle-intersection
const float a = ray.dir.x*ray.dir.x + ray.dir.y*ray.dir.y;
const float b = 2 * ray.dir.x * (ray.start.x-center.x) + 2 * ray.dir.y * (ray.start.y - center.y);
const float c = (ray.start.x-center.x) * (ray.start.x-center.x) + (ray.start.y - center.y)*(ray.start.y - center.y) - radius*radius;
const float discr = b*b - 4*a*c;
return discr >= 0;
}
/** configure this sphere to contain the given point-set */
void adjustToPointSet(const std::vector<Point2>& lst) {
//adjustToPointSetAPX(lst);
adjustToPointSetExact(lst);
// validate
for (const Point2& p : lst) {
Assert::isTrue(this->contains(p), "calculated circle seems incorrect");
}
}
/** combine two circles into a new one containing both */
static Circle2 join(const Circle2& a, const Circle2& b) {
// if one already contains the other, just return it as-is
if (a.contains(b)) {return a;}
if (b.contains(a)) {return b;}
// create both maximum ends
const Point2 out1 = a.center + (a.center-b.center).normalized() * a.radius;
const Point2 out2 = b.center + (b.center-a.center).normalized() * b.radius;
// center is within both ends, so is the radius
Point2 newCen = (out1 + out2) / 2;
float newRad = out1.getDistance(out2) / 2 * 1.0001; // slightly larger to prevent rounding issues
Circle2 res(newCen, newRad);
// check
Assert::isTrue(res.contains(a), "sphere joining error. base-spheres are not contained.");
Assert::isTrue(res.contains(b), "sphere joining error. base-spheres are not contained.");
return res;
}
float getArea() const {
return M_PI * (radius*radius);
}
private:
/*
void show(std::vector<Point2> pts, const Point2 P, const Point2 Q, const Point2 R = Point2(NAN, NAN)) {
static K::Gnuplot gp;
K::GnuplotPlot plot;
K::GnuplotPlotElementPoints gPoints; plot.add(&gPoints); gPoints.setColor(K::GnuplotColor::fromHexStr("#0000ff")); gPoints.setPointSize(1);
K::GnuplotPlotElementLines gLines; plot.add(&gLines);
for (const Point2 p : pts) {
K::GnuplotPoint2 p2(p.x, p.y);
gPoints.add(p2);
}
K::GnuplotPoint2 gP(P.x, P.y);
K::GnuplotPoint2 gQ(Q.x, Q.y);
gLines.addSegment(gP, gQ);
K::GnuplotPoint2 gR(R.x, R.y);
//gLines.addSegment(gP, gR);
gLines.addSegment(gQ, gR);
for (float f = 0; f < M_PI*2; f += 0.1) {
Point2 p = center + Point2(std::cos(f), std::sin(f)) * radius;
K::GnuplotPoint2 gp (p.x, p.y);
gLines.add(gp);
}
gp << "set size ratio -1\n";
gp.draw(plot);
gp.flush();
int i = 0; (void) i;
}
*/
// Graphic Gems 2 - Jon Rokne
void adjustToPointSetExact(const std::vector<Point2>& _lst) {
if (_lst.size() == 2) {
this->center = (_lst[0] + _lst[1]) / 2;
this->radius = _lst[0].getDistance(_lst[1]) / 2 * 1.0001f;
return;
}
std::vector<Point2> lst = _lst;
// find point P having min(p.y)
// NOTE: seems like the original work uses another coordinate system. so we search for max(p.y) instead!
auto compMinY = [] (const Point2 p1, const Point2 p2) {return p1.y < p2.y;};
auto it1 = std::max_element(lst.begin(), lst.end(), compMinY);
Point2 P = *it1;
lst.erase(it1);
// find a point Q such that the angle of the line segment
// PQ with the x axis is minimal
auto compMinAngleX = [&] (const Point2 p1, const Point2 p2) {
const Point2 PQ1 = p1 - P;
const Point2 PQ2 = p2 - P;
const float angle1 = dot(PQ1.normalized(), Point2(0,1));
const float angle2 = dot(PQ2.normalized(), Point2(0,1));
return std::acos(angle1) < std::acos(angle2);
};
auto it2 = std::min_element(lst.begin(), lst.end(), compMinAngleX);
Point2 Q = *it2;
lst.erase(it2);
// get the angle abc which is the angle at "b"
auto angle = [] (const Point2 a, const Point2 b, const Point2 c) {
const Point2 ba = a - b;
const Point2 bc = c - b;
return std::acos(dot(ba.normalized(), bc.normalized()));
};
// TODO: how many loops?
for (size_t xx = 0; xx < lst.size()*10; ++xx) {
auto compMinAnglePRQ = [P,Q,angle] (const Point2 p1, const Point2 p2) {
return std::abs(angle(P,p1,Q)) < std::abs(angle(P,p2,Q));
};
auto it3 = std::min_element(lst.begin(), lst.end(), compMinAnglePRQ);
Point2 R = *it3;
lst.erase(it3);
const float anglePRQ = angle(P,R,Q);
const float angleRPQ = angle(R,P,Q);
const float anglePQR = angle(P,Q,R);
//check for case 1 (angle PRQ is obtuse), the circle is determined
//by two points, P and Q. radius = |(P-Q)/2|, center = (P+Q)/2
if (anglePRQ > M_PI/2) {
this->radius = P.getDistance(Q) / 2 * 1.001f;
this->center = (P+Q)/2;
//if (!containsAll(_lst)) {show(_lst, P, Q, R);}
return;
}
if (angleRPQ > M_PI/2) {
lst.push_back(P);
P = R;
continue;
}
if (anglePQR > M_PI/2) {
lst.push_back(Q);
Q = R;
continue;
}
const Point2 mPQ = (P+Q)/2;
const Point2 mQR = (Q+R)/2;
const float numer = -(-mPQ.y * R.y + mPQ.y * Q.y + mQR.y * R.y - mQR.y * Q.y - mPQ.x * R.x + mPQ.x * Q.x + mQR.x * R.x - mQR.x * Q.x);
const float denom = (-Q.x * R.y + P.x * R.y - P.x * Q.y + Q.y * R.x - P.y * R.x + P.y * Q.x);
const float t = numer / denom;
const float cx = -t * (Q.y - P.y) + mPQ.x;
const float cy = t * (Q.x - P.x) + mPQ.y;
this->center = Point2(cx, cy);
this->radius = this->center.getDistance(P) * 1.001f;
//if (!containsAll(_lst)) {show(_lst, P, Q, R);}
return;
}
throw Exception("should not happen");
}
/*
void adjustToPointSetRefine(const std::vector<Point2>& lst) {
float bestArea = 99999999;
for (size_t i = 0; i < lst.size(); ++i) {
for (size_t j = 0; j < lst.size(); ++j) {
if (i == j) {continue;}
const Point2 center = (lst[i] + lst[j]) / 3;
const float radius = lst[i].getDistance(lst[j]);
const Circle2 test(center, radius);
if (test.containsAll(lst)) {
if (test.getArea() < bestArea) {
bestArea = test.getArea();
this->radius = test.radius;
this->center = test.center;
}
}
}
}
}
*/
void adjustToPointSetAPX(const std::vector<Point2>& lst) {
// NOT OPTIMAL but fast
// calculate the point set's center
Point2 sum(0,0);
for (const Point2 p : lst) {sum += p;}
const Point2 center = sum / lst.size();
// calculate the sphere's radius (maximum distance from center
float radius = 0;
for (const Point2 p : lst) {
const float dist = center.getDistance(p);
if (dist > radius) {radius = dist;}
}
this->radius = radius;
this->center = center;
}
};
#endif // CIRCLE2_H

View File

@@ -68,6 +68,11 @@ struct Point2 {
};
inline float dot(const Point2 p1, const Point2 p2) {
return (p1.x*p2.x) + (p1.y*p2.y);
}
inline void swap(Point2& p1, Point2& p2) {
std::swap(p1.x, p2.x);
std::swap(p1.y, p2.y);

View File

@@ -1,5 +1,5 @@
#ifndef POINT3_H
#define POINT3_H
#ifndef GEO_POINT3_H
#define GEO_POINT3_H
#include "../Assertions.h"
#include <cmath>
@@ -128,4 +128,4 @@ inline Point3 cross(const Point3 a, const Point3 b) {
);
}
#endif // POINT3_H
#endif // GEO_POINT3_H

29
geo/Ray2.h Normal file
View File

@@ -0,0 +1,29 @@
#ifndef GEO_RAY2_H
#define GEO_RAY2_H
#include "Point2.h"
struct Ray2 {
/** starting point */
Point2 start;
/** ray's direction */
Point2 dir;
public:
/** empty */
Ray2() : start(), dir() {
;
}
/** ctor */
Ray2(Point2 start, Point2 dir) : start(start), dir(dir) {
;
}
};
#endif // GEO_RAY2_H

View File

@@ -1,5 +1,5 @@
#ifndef RAY3_H
#define RAY3_H
#ifndef GEO_RAY3_H
#define GEO_RAY3_H
#include "Point3.h"
@@ -25,4 +25,4 @@ public:
};
#endif // RAY3_H
#endif // GEO_RAY3_H

View File

@@ -1,5 +1,5 @@
#ifndef SPHERE3_H
#define SPHERE3_H
#ifndef GEO_SPHERE3_H
#define GEO_SPHERE3_H
#include "Point3.h"
#include "Ray3.h"
@@ -172,7 +172,7 @@ public:
// center is within both ends, so is the radius
Point3 newCen = (out1 + out2) / 2;
float newRad = out1.getDistance(out2) / 2 * 1.001; // slightly larger to prevent rounding issues
float newRad = out1.getDistance(out2) / 2 * 1.0001; // slightly larger to prevent rounding issues
Sphere3 res(newCen, newRad);
// check
@@ -185,4 +185,4 @@ public:
};
#endif // SPHERE3_H
#endif // GEO_SPHERE3_H

View File

@@ -4,29 +4,36 @@
#include <vector>
#include <functional>
#include "../Ray2.h"
#include "../Ray3.h"
#include "BoundingVolume.h"
#include "BoundingVolumeAABB.h"
#include "BoundingVolumeSphere.h"
#include "BoundingVolumeAABB2.h"
#include "BoundingVolumeCircle2.h"
#include "BoundingVolumeAABB3.h"
#include "BoundingVolumeSphere3.h"
template <typename Element, typename Volume, typename Wrapper> class BVH {
template <typename Element, typename Ray, typename Point, typename Volume, typename Wrapper> class BVH {
protected:
/** one node within the tree */
struct BVHNode {
bool isLeaf = true;
bool isLeaf;
bool check;
Volume boundingVolume;
std::vector<BVHNode*> childNodes;
BVHNode(bool isLeaf = false) : isLeaf(isLeaf) {;}
BVHNode(bool isLeaf = false, bool check = true) : isLeaf(isLeaf), check(check) {;}
};
/** one leaf within the tree */
struct BVHLeaf : public BVHNode {
Element element;
BVHLeaf(const Element& e) : BVHNode(true), element(e) {;}
BVHLeaf(const Element& e, const bool check) : BVHNode(true, check), element(e) {;}
};
/** the tree's root */
@@ -40,10 +47,10 @@ public:
}
/** add a new volume to the tree */
void add(const Element& element) {
void add(const Element& element, const bool leafCheck = true) {
// create a new leaf for this element
BVHLeaf* leaf = new BVHLeaf(element);
BVHLeaf* leaf = new BVHLeaf(element, leafCheck);
// get the element's boundin volume
leaf->boundingVolume = getBoundingVolume(element);
@@ -63,17 +70,17 @@ public:
return max;
}
void getHits(const Ray3 ray, std::function<void(const Element&)> func) const {
//int tests = 0; int leafs = 0;
void getHits(const Ray& ray, const std::function<void(const Element&)>& func) const {
getHits(ray, &root, func);
//std::cout << tests << " " << leafs << std::endl;
}
void getHits(const Ray3 ray, const BVHNode* node, std::function<void(const Element&)> func) const {
// this one has to be as fast as possible!
static void getHits(const Ray& ray, const BVHNode* node, const std::function<void(const Element&)>& func) {
for (const BVHNode* sub : node->childNodes) {
if (sub->boundingVolume.intersects(ray)) {
if (!sub->check || sub->boundingVolume.intersects(ray)) {
if (sub->isLeaf) {
BVHLeaf* leaf = (BVHLeaf*)(sub); // TODO: cast
const BVHLeaf* leaf = static_cast<const BVHLeaf*>(sub);
func(leaf->element);
} else {
getHits(ray, sub, func);
@@ -82,8 +89,50 @@ public:
}
}
/** get the tree's depth */
int getDepth() const {
return getDepth(&root, 1);
}
private:
/** call the given function for each leaf within the given subtree */
void forEachLeaf(const BVHNode* n, std::function<void(const BVHNode*)> func) const {
if (n->isLeaf) {
func(n);
} else {
for (BVHNode* child : n->childNodes) {
forEachLeaf(child, func);
}
}
}
/** determine/approximate a new bounding volume around n1+n2 */
Volume getVolAround(const BVHNode* n1, const BVHNode* n2) const {
//return getVolAroundExact(n1, n2);
return getVolAroundAPX(n1, n2);
}
/** determine the bounding-volume around n1 and n2 by (slowly) calculating a new, exact volume based on all leaf-elements */
Volume getVolAroundExact(const BVHNode* n1, const BVHNode* n2) const {
std::vector<Point> verts;
auto onLeaf = [&] (const BVHNode* n) {
BVHLeaf* leaf = (BVHLeaf*) n;
std::vector<Point> subVerts = Wrapper::getVertices(leaf->element);
verts.insert(verts.end(), subVerts.begin(), subVerts.end());
};
forEachLeaf(n1, onLeaf);
forEachLeaf(n2, onLeaf);
return Volume::fromVertices(verts);
}
/** approximate the bounding-volume around n1 and n2 by (quickly) joining their current volumes. the result might be unnecessarily large */
Volume getVolAroundAPX(const BVHNode* n1, const BVHNode* n2) const {
return Volume::join(n1->boundingVolume, n2->boundingVolume);
}
bool combineBest() {
// nothing to do?
@@ -104,7 +153,7 @@ private:
BVHNode* n1 = root.childNodes[i];
BVHNode* n2 = root.childNodes[j];
const Volume newVol = Volume::join(n1->boundingVolume, n2->boundingVolume);
const Volume newVol = getVolAround(n1,n2);
const float newVolSize = newVol.getVolumeSize();
if (newVolSize < best.volSize) {
best.vol = newVol;
@@ -226,13 +275,32 @@ private:
}
int getDepth(const BVHNode* node, const int cur) const {
if (node->isLeaf) {
return cur;
} else {
int res = cur;
for (const BVHNode* sub : node->childNodes) {
const int subDepth = getDepth(sub, cur+1);
if (subDepth > res) {res = subDepth;}
}
return res;
}
}
/** get a bounding-volume for the given element */
Volume getBoundingVolume(const Element& element) {
const std::vector<Point3> verts = Wrapper::getVertices(element);
const std::vector<Point> verts = Wrapper::getVertices(element);
return Volume::fromVertices(verts);
}
};
template <typename Element, typename Volume, typename Wrapper> class BVH3 : public BVH<Element, Ray3, Point3, Volume, Wrapper> {
};
template <typename Element, typename Volume, typename Wrapper> class BVH2 : public BVH<Element, Ray2, Point2, Volume, Wrapper> {
};

View File

@@ -2,39 +2,52 @@
#define BVHDEBUG_H
#include "BVH.h"
#include <KLib/misc/gnuplot/Gnuplot.h>
#include <KLib/misc/gnuplot/GnuplotSplot.h>
#include <KLib/misc/gnuplot/GnuplotSplotElementPoints.h>
#include <KLib/misc/gnuplot/GnuplotSplotElementColorPoints.h>
#include <KLib/misc/gnuplot/GnuplotSplotElementLines.h>
#include <KLib/misc/gnuplot/Gnuplot.h>
#include <KLib/misc/gnuplot/GnuplotPlot.h>
#include <KLib/misc/gnuplot/GnuplotPlotElementPoints.h>
#include <KLib/misc/gnuplot/GnuplotPlotElementColorLines.h>
#include <KLib/misc/gnuplot/GnuplotPlotElementLines.h>
#include "../BBox3.h"
#include <random>
/** adds some debug helpers to the BVH */
template <typename Element, typename Volume, typename Wrapper> class BVHDebug : public BVH<Element, Volume, Wrapper> {
///** adds some debug helpers to the BVH */
//template <typename Element, typename Ray, typename Point, typename Volume, typename Wrapper> class BVHDebug : public BVH<Element, Ray, Point, Volume, Wrapper> {
//};
template <typename Element, typename Volume, typename Wrapper> class BVH3Debug : public BVH<Element, Ray3, Point3, Volume, Wrapper> {
using BVHNode = typename BVH<Element, Ray3, Point3, Volume, Wrapper>::BVHNode;
using BVHLeaf = typename BVH<Element, Ray3, Point3, Volume, Wrapper>::BVHLeaf;
using BVHNode = typename BVH<Element, Volume, Wrapper>::BVHNode;
using BVHLeaf = typename BVH<Element, Volume, Wrapper>::BVHLeaf;
public:
// std::vecto<std::string> colors {
// "#888888", "#888800", "#008888", "#880088", "#ee0000", "#00ee00", "#0000ee"
// };
void show(int maxPts = 1500, bool showLeafs = true) {
std::stringstream out;
static K::Gnuplot gp;
K::GnuplotSplot plot;
K::GnuplotSplotElementColorPoints pVol; plot.add(&pVol); //pVol.setColor(K::GnuplotColor::fromRGB(128,128,128));
K::GnuplotSplotElementPoints pElemPoints; plot.add(&pElemPoints); pElemPoints.setColor(K::GnuplotColor::fromRGB(0,0,255));
K::GnuplotSplotElementLines pElemLines; plot.add(&pElemLines); pElemLines.getStroke().setColor(K::GnuplotColor::fromRGB(0,0,255));
const int depth = recurse(maxPts, showLeafs, 0, &this->root, pVol, pElemPoints, pElemLines);
K::GnuplotSplotElementColorPoints pVol; plot.add(&pVol); //pVol.setColor(K::GnuplotColor::fromRGB(128,128,128));
K::GnuplotSplotElementPoints pElemPoints; plot.add(&pElemPoints); pElemPoints.setColor(K::GnuplotColor::fromRGB(0,0,255));
K::GnuplotSplotElementLines pElemLines; plot.add(&pElemLines); pElemLines.getStroke().setColor(K::GnuplotColor::fromRGB(0,0,255));
plot.getAxisCB().setRange(0, depth);
const int maxDepth = this->getDepth();
recurse(maxPts, showLeafs, 0, &this->root, pVol, pElemPoints, pElemLines);
plot.getAxisCB().setRange(0, maxDepth);
gp << "set view equal xyz\n";
gp.draw(plot);
@@ -44,6 +57,31 @@ public:
private:
Point3 getRandomPoint(BoundingVolumeSphere3 sphere) {
static std::minstd_rand gen;
std::uniform_real_distribution<float> dist(-1, +1);
Point3 dir = Point3(dist(gen), dist(gen), dist(gen)).normalized() * sphere.radius;
return sphere.center + dir;
}
void addLines(const Element& elem, K::GnuplotSplotElementLines& elemLines) {
std::vector<Point3> pts = Wrapper::getDebugLines(elem);
for (size_t i = 0; i< pts.size(); i+=2) {
const Point3 p1 = pts[i+0];
const Point3 p2 = pts[i+1];
K::GnuplotPoint3 gp1(p1.x, p1.y, p1.z);
K::GnuplotPoint3 gp2(p2.x, p2.y, p2.z);
elemLines.addSegment(gp1, gp2);
}
}
int recurse(int maxPts, bool showLeafs, int curDepth, const BVHNode* node, K::GnuplotSplotElementColorPoints& vol, K::GnuplotSplotElementPoints& pElemPoints, K::GnuplotSplotElementLines& elemLines) {
int resDepth = curDepth;
@@ -76,24 +114,53 @@ private:
}
Point3 getRandomPoint(BoundingVolumeSphere sphere) {
static std::minstd_rand gen;
std::uniform_real_distribution<float> dist(-1, +1);
Point3 dir = Point3(dist(gen), dist(gen), dist(gen)).normalized() * sphere.radius;
return sphere.center + dir;
};
template <typename Element, typename Volume, typename Wrapper> class BVH2Debug : public BVH<Element, Ray2, Point2, Volume, Wrapper> {
using BVHNode = typename BVH<Element, Ray2, Point2, Volume, Wrapper>::BVHNode;
using BVHLeaf = typename BVH<Element, Ray2, Point2, Volume, Wrapper>::BVHLeaf;
public:
void show(int maxPts = 1500, bool showLeafs = true) {
std::stringstream out;
static K::Gnuplot gp;
K::GnuplotPlot plot;
K::GnuplotPlotElementColorLines pVolLines; plot.add(&pVolLines);
K::GnuplotPlotElementPoints pElemPoints; plot.add(&pElemPoints); pElemPoints.setColor(K::GnuplotColor::fromRGB(0,0,255));
K::GnuplotPlotElementLines pElemLines; plot.add(&pElemLines); pElemLines.getStroke().setColor(K::GnuplotColor::fromRGB(0,0,255));
const int maxDepth = this->getDepth();
recurse(maxDepth, showLeafs, 0, &this->root, plot, pVolLines, pElemPoints, pElemLines);
plot.getObjects().reOrderByZIndex();
plot.getAxisCB().setRange(0, maxDepth);
gp << "set size ratio -1\n";
gp.draw(plot);
gp.flush();
}
void addLines(const Element& elem, K::GnuplotSplotElementLines& elemLines) {
private:
std::vector<Point3> pts = Wrapper::getDebugLines(elem);
void addLines(const Element& elem, K::GnuplotPlotElementLines& elemLines) {
std::vector<Point2> pts = Wrapper::getDebugLines(elem);
for (size_t i = 0; i< pts.size(); i+=2) {
const Point3 p1 = pts[i+0];
const Point3 p2 = pts[i+1];
const Point2 p1 = pts[i+0];
const Point2 p2 = pts[i+1];
K::GnuplotPoint3 gp1(p1.x, p1.y, p1.z);
K::GnuplotPoint3 gp2(p2.x, p2.y, p2.z);
K::GnuplotPoint2 gp1(p1.x, p1.y);
K::GnuplotPoint2 gp2(p2.x, p2.y);
elemLines.addSegment(gp1, gp2);
@@ -101,6 +168,75 @@ private:
}
std::vector<std::string> colors = {
"#888800", "#444400", "#008888", "#004444", "#880088", "#440044", "#ee0000", "#880000", "#00ee00", "#008800", "#0000ee", "#000088",
"#888800", "#444400", "#008888", "#004444", "#880088", "#440044", "#ee0000", "#880000", "#00ee00", "#008800", "#0000ee", "#000088",
"#888800", "#444400", "#008888", "#004444", "#880088", "#440044", "#ee0000", "#880000", "#00ee00", "#008800", "#0000ee", "#000088"
};
void showVolume(const BoundingVolumeCircle2& circle, int maxDepth, int curDepth, K::GnuplotPlot& plot, K::GnuplotPlotElementColorLines& pVolLines) {
K::GnuplotObjectPolygon* poly = new K::GnuplotObjectPolygon();
for (int i = 0; i < 20; ++i) {
const float f = M_PI*2 * i / 19;
const Point2 p = circle.getPointAt(f);
poly->add(K::GnuplotCoordinate2(p.x, p.y, K::GnuplotCoordinateSystem::FIRST));
poly->getFill().setColor(K::GnuplotColor::fromHexStr(colors[maxDepth-curDepth]));
poly->getFill().setStyle(K::GnuplotFillStyle::SOLID);
poly->setZIndex(curDepth);
}
plot.getObjects().add(poly);
}
void showVolume(const BoundingVolumeAABB2& _aabb, int maxDepth, int curDepth, K::GnuplotPlot& plot, K::GnuplotPlotElementColorLines& pVolLines) {
BBox2 bbox2 = _aabb;
bbox2.grow( (10-curDepth) / 100.0f );
// pVolLines.add(K::GnuplotPoint2(bbox2.getMin().x, bbox2.getMin().y), curDepth);
// pVolLines.add(K::GnuplotPoint2(bbox2.getMax().x, bbox2.getMin().y), curDepth);
// pVolLines.add(K::GnuplotPoint2(bbox2.getMax().x, bbox2.getMax().y), curDepth);
// pVolLines.add(K::GnuplotPoint2(bbox2.getMin().x, bbox2.getMax().y), curDepth);
// pVolLines.add(K::GnuplotPoint2(bbox2.getMin().x, bbox2.getMin().y), curDepth);
// pVolLines.splitFace();
K::GnuplotObjectPolygon* poly = new K::GnuplotObjectPolygon();
poly->getStroke().setColor(K::GnuplotColor::fromHexStr(colors[maxDepth-curDepth]));
//poly->getFill().setColor(K::GnuplotColor::fromHexStr(colors[maxDepth-curDepth]));
//poly->getFill().setStyle(K::GnuplotFillStyle::SOLID);
poly->add(K::GnuplotCoordinate2(bbox2.getMin().x, bbox2.getMin().y, K::GnuplotCoordinateSystem::FIRST));
poly->add(K::GnuplotCoordinate2(bbox2.getMax().x, bbox2.getMin().y, K::GnuplotCoordinateSystem::FIRST));
poly->add(K::GnuplotCoordinate2(bbox2.getMax().x, bbox2.getMax().y, K::GnuplotCoordinateSystem::FIRST));
poly->add(K::GnuplotCoordinate2(bbox2.getMin().x, bbox2.getMax().y, K::GnuplotCoordinateSystem::FIRST));
poly->close();
poly->setZIndex(curDepth);
plot.getObjects().add(poly);
}
int recurse(int maxDepth, bool showLeafs, int curDepth, const BVHNode* node, K::GnuplotPlot& plot, K::GnuplotPlotElementColorLines& pVolLines, K::GnuplotPlotElementPoints& pElemPoints, K::GnuplotPlotElementLines& elemLines) {
int resDepth = curDepth;
for (BVHNode* sub : node->childNodes) {
resDepth = recurse(maxDepth, showLeafs, curDepth+1, sub, plot, pVolLines, pElemPoints, elemLines);
}
if (!node->isLeaf || showLeafs) {
if (node != &this->root) {
//const int numPts = maxPts / (curDepth+1);
showVolume(node->boundingVolume, maxDepth, curDepth, plot, pVolLines);
}
}
if (node->isLeaf) {
BVHLeaf* leaf = (BVHLeaf*) node;
std::vector<Point2> verts = Wrapper::getVertices(leaf->element);
for (const Point2 p : verts) {
pElemPoints.add(K::GnuplotPoint2(p.x, p.y));
}
addLines(leaf->element, elemLines);
}
return resDepth;
}
};
#endif // BVHDEBUG_H

View File

@@ -0,0 +1,36 @@
#ifndef BOUNDINGVOLUMEAABB2_H
#define BOUNDINGVOLUMEAABB2_H
#include <vector>
#include "BoundingVolume.h"
#include "../BBox2.h"
class BoundingVolumeAABB2 : public BBox2 {
public:
BoundingVolumeAABB2() {;}
BoundingVolumeAABB2(const BBox2& bb) : BBox2(bb) {;}
float getVolumeSize() const {
const float dx = getMax().x - getMin().x;
const float dy = getMax().y - getMin().y;
return (dx*dy);
}
/** construct a volume around the given point-set */
static BoundingVolumeAABB2 fromVertices(const std::vector<Point2>& verts) {
BoundingVolumeAABB2 bvs;
for (const Point2 p : verts) {bvs.add(p);}
return bvs;
}
static BoundingVolumeAABB2 join(const BoundingVolumeAABB2 a, const BoundingVolumeAABB2 b) {
return BoundingVolumeAABB2(BBox2::join(a, b));
}
};
#endif // BOUNDINGVOLUMEAABB2_H

View File

@@ -1,4 +0,0 @@
#ifndef BOUNDINGVOLUMEBOX_H
#define BOUNDINGVOLUMEBOX_H
#endif // BOUNDINGVOLUMEBOX_H

View File

@@ -0,0 +1,38 @@
#ifndef BOUDINGVOLUMECIRCLE2_H
#define BOUDINGVOLUMECIRCLE2_H
#include <vector>
#include "BoundingVolume.h"
#include "../Circle2.h"
class BoundingVolumeCircle2 : public Circle2 {
public:
BoundingVolumeCircle2() {;}
BoundingVolumeCircle2(const Circle2& c) : Circle2(c) {;}
float getVolumeSize() const {
return M_PI * (radius*radius);
}
bool intersects(const Ray2 ray) const {
return Circle2::intersects(ray);
}
/** construct a volume around the given point-set */
static BoundingVolumeCircle2 fromVertices(const std::vector<Point2>& verts) {
BoundingVolumeCircle2 bvs;
bvs.adjustToPointSet(verts);
return bvs;
}
static BoundingVolumeCircle2 join(const BoundingVolumeCircle2 a, const BoundingVolumeCircle2 b) {
return BoundingVolumeCircle2(Circle2::join(a, b));
}
};
#endif // BOUDINGVOLUMECIRCLE2_H

View File

@@ -1,4 +0,0 @@
#ifndef BOUNDINGVOLUMEHIERARCHY_H
#define BOUNDINGVOLUMEHIERARCHY_H
#endif // BOUNDINGVOLUMEHIERARCHY_H

View File

@@ -5,13 +5,13 @@
#include "../Sphere3.h"
#include "../Point3.h"
class BoundingVolumeSphere : public BoundingVolume, public Sphere3 {
class BoundingVolumeSphere3 : public BoundingVolume, public Sphere3 {
public:
BoundingVolumeSphere() {;}
BoundingVolumeSphere3() {;}
BoundingVolumeSphere(const Sphere3& s) : Sphere3(s) {;}
BoundingVolumeSphere3(const Sphere3& s) : Sphere3(s) {;}
float getVolumeSize() const {
return (4.0f / 3.0f) * M_PI * (radius*radius*radius);
@@ -27,25 +27,25 @@ public:
/** does the volume intersect with the given volume? */
bool intersects(const BoundingVolume& other) const {
const BoundingVolumeSphere& sphere = (const BoundingVolumeSphere&) other;
const BoundingVolumeSphere3& sphere = (const BoundingVolumeSphere3&) other;
return Sphere3::intersects(sphere);
}
/** does the volume contain the given volume? */
bool contains(const BoundingVolume& other) const {
const BoundingVolumeSphere& sphere = (const BoundingVolumeSphere&) other;
const BoundingVolumeSphere3& sphere = (const BoundingVolumeSphere3&) other;
return Sphere3::contains(sphere);
}
/** construct a volume around the given point-set */
static BoundingVolumeSphere fromVertices(const std::vector<Point3>& verts) {
BoundingVolumeSphere bvs;
static BoundingVolumeSphere3 fromVertices(const std::vector<Point3>& verts) {
BoundingVolumeSphere3 bvs;
bvs.adjustToPointSet(verts);
return bvs;
}
static BoundingVolumeSphere join(const BoundingVolumeSphere a, const BoundingVolumeSphere b) {
return BoundingVolumeSphere(Sphere3::join(a, b));
static BoundingVolumeSphere3 join(const BoundingVolumeSphere3 a, const BoundingVolumeSphere3 b) {
return BoundingVolumeSphere3(Sphere3::join(a, b));
}
};

View File

@@ -54,8 +54,8 @@ Copyright: (C) Advanced Interfaces Group,
#define TRUE 1
#endif
#define LEFT 0
#define RIGHT 1
#define GPC_LEFT 0
#define GPC_RIGHT 1
#define ABOVE 0
#define BELOW 1
@@ -504,8 +504,8 @@ static edge_node *build_lmt(lmt_node **lmt, sb_tree **sbtree,
&(e[i + 1]) : NULL;
e[i].pred= ((num_edges > 1) && (i > 0)) ? &(e[i - 1]) : NULL;
e[i].next_bound= NULL;
e[i].bside[CLIP]= (op == GPC_DIFF) ? RIGHT : LEFT;
e[i].bside[SUBJ]= LEFT;
e[i].bside[CLIP]= (op == GPC_DIFF) ? GPC_RIGHT : GPC_LEFT;
e[i].bside[SUBJ]= GPC_LEFT;
}
insert_bound(bound_list(lmt, edge_table[min].vertex.y), e);
}
@@ -554,8 +554,8 @@ static edge_node *build_lmt(lmt_node **lmt, sb_tree **sbtree,
&(e[i + 1]) : NULL;
e[i].pred= ((num_edges > 1) && (i > 0)) ? &(e[i - 1]) : NULL;
e[i].next_bound= NULL;
e[i].bside[CLIP]= (op == GPC_DIFF) ? RIGHT : LEFT;
e[i].bside[SUBJ]= LEFT;
e[i].bside[CLIP]= (op == GPC_DIFF) ? GPC_RIGHT : GPC_LEFT;
e[i].bside[SUBJ]= GPC_LEFT;
}
insert_bound(bound_list(lmt, edge_table[min].vertex.y), e);
}
@@ -736,7 +736,7 @@ static int count_contours(polygon_node *polygon)
{
/* Count the vertices in the current contour */
nv= 0;
for (v= polygon->proxy->v[LEFT]; v; v= v->next)
for (v= polygon->proxy->v[GPC_LEFT]; v; v= v->next)
nv++;
/* Record valid vertex counts in the active field */
@@ -748,7 +748,7 @@ static int count_contours(polygon_node *polygon)
else
{
/* Invalid contour: just free the heap */
for (v= polygon->proxy->v[LEFT]; v; v= nextv)
for (v= polygon->proxy->v[GPC_LEFT]; v; v= nextv)
{
nextv= v->next;
FREE(v);
@@ -770,10 +770,10 @@ static void add_left(polygon_node *p, double x, double y)
nv->y= y;
/* Add vertex nv to the left end of the polygon's vertex list */
nv->next= p->proxy->v[LEFT];
nv->next= p->proxy->v[GPC_LEFT];
/* Update proxy->[LEFT] to point to nv */
p->proxy->v[LEFT]= nv;
/* Update proxy->[GPC_LEFT] to point to nv */
p->proxy->v[GPC_LEFT]= nv;
}
@@ -787,8 +787,8 @@ static void merge_left(polygon_node *p, polygon_node *q, polygon_node *list)
if (p->proxy != q->proxy)
{
/* Assign p's vertex list to the left end of q's list */
p->proxy->v[RIGHT]->next= q->proxy->v[LEFT];
q->proxy->v[LEFT]= p->proxy->v[LEFT];
p->proxy->v[GPC_RIGHT]->next= q->proxy->v[GPC_LEFT];
q->proxy->v[GPC_LEFT]= p->proxy->v[GPC_LEFT];
/* Redirect any p->proxy references to q->proxy */
@@ -815,10 +815,10 @@ static void add_right(polygon_node *p, double x, double y)
nv->next= NULL;
/* Add vertex nv to the right end of the polygon's vertex list */
p->proxy->v[RIGHT]->next= nv;
p->proxy->v[GPC_RIGHT]->next= nv;
/* Update proxy->v[RIGHT] to point to nv */
p->proxy->v[RIGHT]= nv;
/* Update proxy->v[GPC_RIGHT] to point to nv */
p->proxy->v[GPC_RIGHT]= nv;
}
@@ -832,8 +832,8 @@ static void merge_right(polygon_node *p, polygon_node *q, polygon_node *list)
if (p->proxy != q->proxy)
{
/* Assign p's vertex list to the right end of q's list */
q->proxy->v[RIGHT]->next= p->proxy->v[LEFT];
q->proxy->v[RIGHT]= p->proxy->v[RIGHT];
q->proxy->v[GPC_RIGHT]->next= p->proxy->v[GPC_LEFT];
q->proxy->v[GPC_RIGHT]= p->proxy->v[GPC_RIGHT];
/* Redirect any p->proxy references to q->proxy */
for (target= p->proxy; list; list= list->next)
@@ -869,9 +869,9 @@ static void add_local_min(polygon_node **p, edge_node *edge,
(*p)->active= TRUE;
(*p)->next= existing_min;
/* Make v[LEFT] and v[RIGHT] point to new vertex nv */
(*p)->v[LEFT]= nv;
(*p)->v[RIGHT]= nv;
/* Make v[GPC_LEFT] and v[GPC_RIGHT] point to new vertex nv */
(*p)->v[GPC_LEFT]= nv;
(*p)->v[GPC_RIGHT]= nv;
/* Assign polygon p to the edge */
edge->outp[ABOVE]= *p;
@@ -911,10 +911,10 @@ static void new_tristrip(polygon_node **tn, edge_node *edge,
{
MALLOC(*tn, sizeof(polygon_node), "tristrip node creation", polygon_node);
(*tn)->next= NULL;
(*tn)->v[LEFT]= NULL;
(*tn)->v[RIGHT]= NULL;
(*tn)->v[GPC_LEFT]= NULL;
(*tn)->v[GPC_RIGHT]= NULL;
(*tn)->active= 1;
add_vertex(&((*tn)->v[LEFT]), x, y);
add_vertex(&((*tn)->v[GPC_LEFT]), x, y);
edge->outp[ABOVE]= *tn;
}
else
@@ -1125,7 +1125,7 @@ void gpc_polygon_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
polygon_node *out_poly= NULL, *p, *q, *poly, *npoly, *cf= NULL;
vertex_node *vtx, *nv;
h_state horiz[2];
int in[2], exists[2], parity[2]= {LEFT, LEFT};
int in[2], exists[2], parity[2]= {GPC_LEFT, GPC_LEFT};
int c, v, contributing, search, scanbeam= 0, sbt_entries= 0;
int vclass, bl, br, tl, tr;
double *sbt= NULL, xb, px, yb, yt, dy, ix, iy;
@@ -1178,7 +1178,7 @@ void gpc_polygon_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
/* Invert clip polygon for difference operation */
if (op == GPC_DIFF)
parity[CLIP]= RIGHT;
parity[CLIP]= GPC_RIGHT;
local_min= lmt;
@@ -1721,7 +1721,7 @@ void gpc_polygon_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
"vertex creation", gpc_vertex);
v= result->contour[c].num_vertices - 1;
for (vtx= poly->proxy->v[LEFT]; vtx; vtx= nv)
for (vtx= poly->proxy->v[GPC_LEFT]; vtx; vtx= nv)
{
nv= vtx->next;
result->contour[c].vertex[v].x= vtx->x;
@@ -1786,7 +1786,7 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
vertex_node *lt, *ltn, *rt, *rtn;
h_state horiz[2];
vertex_type cft;
int in[2], exists[2], parity[2]= {LEFT, LEFT};
int in[2], exists[2], parity[2]= {GPC_LEFT, GPC_LEFT};
int s, v, contributing, search, scanbeam= 0, sbt_entries= 0;
int vclass, bl, br, tl, tr;
double *sbt= NULL, xb, px, nx, yb, yt, dy, ix, iy;
@@ -1831,7 +1831,7 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
/* Invert clip polygon for difference operation */
if (op == GPC_DIFF)
parity[CLIP]= RIGHT;
parity[CLIP]= GPC_RIGHT;
local_min= lmt;
@@ -1990,17 +1990,17 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
case ERI:
edge->outp[ABOVE]= cf->outp[ABOVE];
if (xb != cf->xb)
VERTEX(edge, ABOVE, RIGHT, xb, yb);
VERTEX(edge, ABOVE, GPC_RIGHT, xb, yb);
cf= NULL;
break;
case ELI:
VERTEX(edge, BELOW, LEFT, xb, yb);
VERTEX(edge, BELOW, GPC_LEFT, xb, yb);
edge->outp[ABOVE]= NULL;
cf= edge;
break;
case EMX:
if (xb != cf->xb)
VERTEX(edge, BELOW, RIGHT, xb, yb);
VERTEX(edge, BELOW, GPC_RIGHT, xb, yb);
edge->outp[ABOVE]= NULL;
cf= NULL;
break;
@@ -2008,11 +2008,11 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
if (cft == LED)
{
if (cf->bot.y != yb)
VERTEX(cf, BELOW, LEFT, cf->xb, yb);
VERTEX(cf, BELOW, GPC_LEFT, cf->xb, yb);
new_tristrip(&tlist, cf, cf->xb, yb);
}
edge->outp[ABOVE]= cf->outp[ABOVE];
VERTEX(edge, ABOVE, RIGHT, xb, yb);
VERTEX(edge, ABOVE, GPC_RIGHT, xb, yb);
break;
case ILI:
new_tristrip(&tlist, edge, xb, yb);
@@ -2023,33 +2023,33 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
if (cft == LED)
{
if (cf->bot.y != yb)
VERTEX(cf, BELOW, LEFT, cf->xb, yb);
VERTEX(cf, BELOW, GPC_LEFT, cf->xb, yb);
new_tristrip(&tlist, cf, cf->xb, yb);
}
VERTEX(edge, BELOW, RIGHT, xb, yb);
VERTEX(edge, BELOW, GPC_RIGHT, xb, yb);
edge->outp[ABOVE]= NULL;
break;
case IMX:
VERTEX(edge, BELOW, LEFT, xb, yb);
VERTEX(edge, BELOW, GPC_LEFT, xb, yb);
edge->outp[ABOVE]= NULL;
cft= IMX;
break;
case IMM:
VERTEX(edge, BELOW, LEFT, xb, yb);
VERTEX(edge, BELOW, GPC_LEFT, xb, yb);
edge->outp[ABOVE]= cf->outp[ABOVE];
if (xb != cf->xb)
VERTEX(cf, ABOVE, RIGHT, xb, yb);
VERTEX(cf, ABOVE, GPC_RIGHT, xb, yb);
cf= edge;
break;
case EMM:
VERTEX(edge, BELOW, RIGHT, xb, yb);
VERTEX(edge, BELOW, GPC_RIGHT, xb, yb);
edge->outp[ABOVE]= NULL;
new_tristrip(&tlist, edge, xb, yb);
cf= edge;
break;
case LED:
if (edge->bot.y == yb)
VERTEX(edge, BELOW, LEFT, xb, yb);
VERTEX(edge, BELOW, GPC_LEFT, xb, yb);
edge->outp[ABOVE]= edge->outp[BELOW];
cf= edge;
cft= LED;
@@ -2060,21 +2060,21 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
{
if (cf->bot.y == yb)
{
VERTEX(edge, BELOW, RIGHT, xb, yb);
VERTEX(edge, BELOW, GPC_RIGHT, xb, yb);
}
else
{
if (edge->bot.y == yb)
{
VERTEX(cf, BELOW, LEFT, cf->xb, yb);
VERTEX(edge, BELOW, RIGHT, xb, yb);
VERTEX(cf, BELOW, GPC_LEFT, cf->xb, yb);
VERTEX(edge, BELOW, GPC_RIGHT, xb, yb);
}
}
}
else
{
VERTEX(edge, BELOW, RIGHT, xb, yb);
VERTEX(edge, ABOVE, RIGHT, xb, yb);
VERTEX(edge, BELOW, GPC_RIGHT, xb, yb);
VERTEX(edge, ABOVE, GPC_RIGHT, xb, yb);
}
cf= NULL;
break;
@@ -2199,8 +2199,8 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
if (p)
{
P_EDGE(prev_edge, e0, ABOVE, px, iy);
VERTEX(prev_edge, ABOVE, LEFT, px, iy);
VERTEX(e0, ABOVE, RIGHT, ix, iy);
VERTEX(prev_edge, ABOVE, GPC_LEFT, px, iy);
VERTEX(e0, ABOVE, GPC_RIGHT, ix, iy);
e1->outp[ABOVE]= e0->outp[ABOVE];
e0->outp[ABOVE]= NULL;
}
@@ -2209,8 +2209,8 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
if (q)
{
N_EDGE(next_edge, e1, ABOVE, nx, iy);
VERTEX(e1, ABOVE, LEFT, ix, iy);
VERTEX(next_edge, ABOVE, RIGHT, nx, iy);
VERTEX(e1, ABOVE, GPC_LEFT, ix, iy);
VERTEX(next_edge, ABOVE, GPC_RIGHT, nx, iy);
e0->outp[ABOVE]= e1->outp[ABOVE];
e1->outp[ABOVE]= NULL;
}
@@ -2218,29 +2218,29 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
case EMX:
if (p && q)
{
VERTEX(e0, ABOVE, LEFT, ix, iy);
VERTEX(e0, ABOVE, GPC_LEFT, ix, iy);
e0->outp[ABOVE]= NULL;
e1->outp[ABOVE]= NULL;
}
break;
case IMN:
P_EDGE(prev_edge, e0, ABOVE, px, iy);
VERTEX(prev_edge, ABOVE, LEFT, px, iy);
VERTEX(prev_edge, ABOVE, GPC_LEFT, px, iy);
N_EDGE(next_edge, e1, ABOVE, nx, iy);
VERTEX(next_edge, ABOVE, RIGHT, nx, iy);
VERTEX(next_edge, ABOVE, GPC_RIGHT, nx, iy);
new_tristrip(&tlist, prev_edge, px, iy);
e1->outp[ABOVE]= prev_edge->outp[ABOVE];
VERTEX(e1, ABOVE, RIGHT, ix, iy);
VERTEX(e1, ABOVE, GPC_RIGHT, ix, iy);
new_tristrip(&tlist, e0, ix, iy);
next_edge->outp[ABOVE]= e0->outp[ABOVE];
VERTEX(next_edge, ABOVE, RIGHT, nx, iy);
VERTEX(next_edge, ABOVE, GPC_RIGHT, nx, iy);
break;
case ILI:
if (p)
{
VERTEX(e0, ABOVE, LEFT, ix, iy);
VERTEX(e0, ABOVE, GPC_LEFT, ix, iy);
N_EDGE(next_edge, e1, ABOVE, nx, iy);
VERTEX(next_edge, ABOVE, RIGHT, nx, iy);
VERTEX(next_edge, ABOVE, GPC_RIGHT, nx, iy);
e1->outp[ABOVE]= e0->outp[ABOVE];
e0->outp[ABOVE]= NULL;
}
@@ -2248,9 +2248,9 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
case IRI:
if (q)
{
VERTEX(e1, ABOVE, RIGHT, ix, iy);
VERTEX(e1, ABOVE, GPC_RIGHT, ix, iy);
P_EDGE(prev_edge, e0, ABOVE, px, iy);
VERTEX(prev_edge, ABOVE, LEFT, px, iy);
VERTEX(prev_edge, ABOVE, GPC_LEFT, px, iy);
e0->outp[ABOVE]= e1->outp[ABOVE];
e1->outp[ABOVE]= NULL;
}
@@ -2258,40 +2258,40 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
case IMX:
if (p && q)
{
VERTEX(e0, ABOVE, RIGHT, ix, iy);
VERTEX(e1, ABOVE, LEFT, ix, iy);
VERTEX(e0, ABOVE, GPC_RIGHT, ix, iy);
VERTEX(e1, ABOVE, GPC_LEFT, ix, iy);
e0->outp[ABOVE]= NULL;
e1->outp[ABOVE]= NULL;
P_EDGE(prev_edge, e0, ABOVE, px, iy);
VERTEX(prev_edge, ABOVE, LEFT, px, iy);
VERTEX(prev_edge, ABOVE, GPC_LEFT, px, iy);
new_tristrip(&tlist, prev_edge, px, iy);
N_EDGE(next_edge, e1, ABOVE, nx, iy);
VERTEX(next_edge, ABOVE, RIGHT, nx, iy);
VERTEX(next_edge, ABOVE, GPC_RIGHT, nx, iy);
next_edge->outp[ABOVE]= prev_edge->outp[ABOVE];
VERTEX(next_edge, ABOVE, RIGHT, nx, iy);
VERTEX(next_edge, ABOVE, GPC_RIGHT, nx, iy);
}
break;
case IMM:
if (p && q)
{
VERTEX(e0, ABOVE, RIGHT, ix, iy);
VERTEX(e1, ABOVE, LEFT, ix, iy);
VERTEX(e0, ABOVE, GPC_RIGHT, ix, iy);
VERTEX(e1, ABOVE, GPC_LEFT, ix, iy);
P_EDGE(prev_edge, e0, ABOVE, px, iy);
VERTEX(prev_edge, ABOVE, LEFT, px, iy);
VERTEX(prev_edge, ABOVE, GPC_LEFT, px, iy);
new_tristrip(&tlist, prev_edge, px, iy);
N_EDGE(next_edge, e1, ABOVE, nx, iy);
VERTEX(next_edge, ABOVE, RIGHT, nx, iy);
VERTEX(next_edge, ABOVE, GPC_RIGHT, nx, iy);
e1->outp[ABOVE]= prev_edge->outp[ABOVE];
VERTEX(e1, ABOVE, RIGHT, ix, iy);
VERTEX(e1, ABOVE, GPC_RIGHT, ix, iy);
new_tristrip(&tlist, e0, ix, iy);
next_edge->outp[ABOVE]= e0->outp[ABOVE];
VERTEX(next_edge, ABOVE, RIGHT, nx, iy);
VERTEX(next_edge, ABOVE, GPC_RIGHT, nx, iy);
}
break;
case EMM:
if (p && q)
{
VERTEX(e0, ABOVE, LEFT, ix, iy);
VERTEX(e0, ABOVE, GPC_LEFT, ix, iy);
new_tristrip(&tlist, e1, ix, iy);
e0->outp[ABOVE]= e1->outp[ABOVE];
}
@@ -2408,13 +2408,13 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
v= 0;
if (INVERT_TRISTRIPS)
{
lt= tn->v[RIGHT];
rt= tn->v[LEFT];
lt= tn->v[GPC_RIGHT];
rt= tn->v[GPC_LEFT];
}
else
{
lt= tn->v[LEFT];
rt= tn->v[RIGHT];
lt= tn->v[GPC_LEFT];
rt= tn->v[GPC_RIGHT];
}
while (lt || rt)
{
@@ -2442,12 +2442,12 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
else
{
/* Invalid tristrip: just free the heap */
for (lt= tn->v[LEFT]; lt; lt= ltn)
for (lt= tn->v[GPC_LEFT]; lt; lt= ltn)
{
ltn= lt->next;
FREE(lt);
}
for (rt= tn->v[RIGHT]; rt; rt=rtn)
for (rt= tn->v[GPC_RIGHT]; rt; rt=rtn)
{
rtn= rt->next;
FREE(rt);

View File

@@ -36,7 +36,8 @@ int main(int argc, char** argv) {
//::testing::GTEST_FLAG(filter) = "*Matrix4*";
//::testing::GTEST_FLAG(filter) = "*Sphere3*";
::testing::GTEST_FLAG(filter) = "*RayTrace3*";
::testing::GTEST_FLAG(filter) = "Geo_*";
//::testing::GTEST_FLAG(filter) = "*RayTrace3*";
//::testing::GTEST_FLAG(filter) = "*BVH*";

View File

@@ -58,7 +58,7 @@ public:
}
/** ctor with custom seed */
DrawList(const uint32_t seed) : cumProbability(0), gen(defRndGen(seed)) {
DrawList(const uint32_t seed) : cumProbability(0), defRndGen(seed), gen(defRndGen) {
;
}

View File

@@ -4,7 +4,7 @@
#include "../../geo/Angle.h"
TEST(Angle, dir) {
TEST(Geo_Angle, dir) {
// angle -> pointer -> angle
ASSERT_NEAR(0, Angle::getRAD_2PI(Angle::getPointer(0)), 0.0001);
@@ -14,7 +14,7 @@ TEST(Angle, dir) {
}
TEST(Angle, safe) {
TEST(Geo_Angle, safe) {
ASSERT_EQ(0, (int)std::round(Angle::radToDeg(Angle::makeSafe_2PI(Angle::degToRad(0)))));
ASSERT_EQ(0, (int)std::round(Angle::radToDeg(Angle::makeSafe_2PI(Angle::degToRad(360)))));
@@ -35,7 +35,7 @@ TEST(Angle, safe) {
}
TEST(Angle, calc) {
TEST(Geo_Angle, calc) {
ASSERT_EQ(0, (int)Angle::getDEG_360(0,0, +1,0)); // to the right
ASSERT_EQ(90, (int)Angle::getDEG_360(0,0, 0,+1)); // upwards
@@ -49,7 +49,7 @@ TEST(Angle, calc) {
}
TEST(Angle, signedDiff) {
TEST(Geo_Angle, signedDiff) {
const float d = 0.00001f;
ASSERT_NEAR(+M_PI/2, Angle::getSignedDiffRAD_2PI(0, M_PI/2), d); // CCW
@@ -62,7 +62,7 @@ TEST(Angle, signedDiff) {
}
TEST(Angle, diff) {
TEST(Geo_Angle, diff) {
const float r = Angle::getRAD_2PI(0,0, +1,0); // to the right
const float u = Angle::getRAD_2PI(0,0, 0,+1); // upwards

View File

@@ -4,7 +4,7 @@
#include "../../geo/BBox2.h"
TEST(BBox, noIntersect) {
TEST(Geo_BBox2, noIntersect) {
BBox2 bb(Point2(1,1), Point2(3,3));
@@ -21,7 +21,8 @@ TEST(BBox, noIntersect) {
}
TEST(BBox, noDirectIntersect) {
/*
TEST(Geo_BBox2, noDirectIntersect) {
BBox2 bb(Point2(1,1), Point2(3,3));
@@ -37,9 +38,10 @@ TEST(BBox, noDirectIntersect) {
ASSERT_FALSE(bb.intersects(l4));
}
*/
TEST(BBox, positiveIntersect) {
TEST(Geo_BBox2, positiveIntersect) {
BBox2 bb(Point2(1,1), Point2(3,3));

18
tests/geo/TestBBox3.cpp Normal file
View File

@@ -0,0 +1,18 @@
#ifdef WITH_TESTS
#include "../Tests.h"
#include "../../geo/BBox3.h"
TEST(Geo_BBox3, noIntersect) {
BBox3 bb1(Point3(0,0,0), Point3(1,1,1));
BBox3 bb2(Point3(1,1,1), Point3(2,3,4));
BBox3 joined = BBox3::join(bb1, bb2);
ASSERT_EQ(Point3(2,3,4), joined.getMax());
ASSERT_EQ(Point3(0,0,0), joined.getMin());
}
#endif

176
tests/geo/TestBVH2.cpp Normal file
View File

@@ -0,0 +1,176 @@
#ifdef WITH_TESTS
#include "../Tests.h"
#include "../../geo/volume/BVH.h"
#include "../../geo/volume/BVHDebug.h"
#include "../../geo/BBox2.h"
#include "../../geo/Line2.h"
#include "../../floorplan/v2/Floorplan.h"
#include "../../floorplan/v2/FloorplanReader.h"
#include "../../wifi/estimate/ray3/ModelFactory.h"
struct WrapperBBox2 {
static std::vector<Point2> getVertices(const BBox2& bbox) {
return {bbox.getMin(), bbox.getMax()};
}
static std::vector<Point2> getDebugLines(const BBox2& bbox) {
Point2 p1(bbox.getMin().x, bbox.getMin().y);
Point2 p2(bbox.getMax().x, bbox.getMin().y);
Point2 p3(bbox.getMax().x, bbox.getMax().y);
Point2 p4(bbox.getMin().x, bbox.getMax().y);
std::vector<Point2> res;
res.push_back(p1); res.push_back(p2);
res.push_back(p2); res.push_back(p3);
res.push_back(p3); res.push_back(p4);
res.push_back(p4); res.push_back(p1);
return res;
}
};
struct WrapperLine2 {
static std::vector<Point2> getVertices(const Line2& l) {
return {l.p1, l.p2};
}
static std::vector<Point2> getDebugLines(const Line2& l) {
return {l.p1, l.p2};
}
};
/*
TEST(Geo_BVH2, tree) {
BVH3Debug<BBox3, BoundingVolumeSphere3, Wrapper> tree;
BBox3 bb1(Point3(0,0,0), Point3(1,1,1));
tree.add(bb1);
BBox3 bb2(Point3(-1,-1,-1), Point3(0,0,0));
tree.add(bb2);
tree.optimize();
tree.show();
int i = 0; (void) i;
}
TEST(Geo_BVH2, tree2) {
BVH3Debug<BBox3, BoundingVolumeSphere3, Wrapper> tree;
BBox3 bb1(Point3(0,0,0), Point3(1,1,1));
tree.add(bb1);
BBox3 bb2(Point3(-1,0,0), Point3(0,1,1));
tree.add(bb2);
tree.optimize();
tree.show();
int i = 0; (void) i;
}
TEST(Geo_BVH2, tree3) {
BVH3Debug<BBox3, BoundingVolumeSphere3, Wrapper> tree;
BBox3 bb1 = BBox3::around(Point3(+0.5, +0.5, 0.0), Point3(0.25, 0.25, 0.25));
tree.add(bb1);
BBox3 bb2 = BBox3::around(Point3(-0.5, +0.5, 0.0), Point3(0.25, 0.25, 0.25));
tree.add(bb2);
BBox3 bb3 = BBox3::around(Point3(-0.0, +0.5, 0.0), Point3(0.36, 0.36, 0.36));
tree.add(bb3);
BBox3 bb4 = BBox3::around(Point3(-0.0, +0.0, 0.0), Point3(0.5, 0.5, 0.5));
tree.add(bb4);
tree.optimize(1);
tree.show();
tree.optimize(1);
tree.show();
tree.optimize(1);
tree.show();
int i = 0; (void) i;
}
TEST(Geo_BVH2, treeMap) {
std::string file = "/apps/SHL39.xml";
Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(file);
ModelFactory fac(map);
fac.setExportCeilings(false);
fac.setFloors({map->floors[3]});
std::vector<Obstacle3D> obs = fac.triangulize();
BVH3Debug<Obstacle3D, BoundingVolumeSphere3, WrapperObs3D> tree;
for (const Obstacle3D& o : obs) {
tree.add(o);
}
//tree.show(150);
//int rounds = tree.optimize();
for (int i = 0; i < 200; ++i) {
tree.optimize(1);
//if (i%3==0) {
tree.show(250, false);
//}
}
int i = 0; (void) i;
}
*/
TEST(Geo_BVH2, treeRandom) {
//BVH2Debug<Line2, BoundingVolumeCircle2, WrapperLine2> tree;
BVH2Debug<Line2, BoundingVolumeAABB2, WrapperLine2> tree;
std::minstd_rand gen;
std::uniform_real_distribution<float> dPos(-4.0, +4.0);
std::uniform_real_distribution<float> dDir(+0.1, +0.5);
for (int i = 0; i < 50; ++i) {
const Point2 pos(dPos(gen), dPos(gen));
const Point2 dir(dDir(gen), dDir(gen));
const Line2 line(pos, pos+dir);
tree.add(line);
}
tree.show();
if (1 == 0) {
for (int i = 0; i < 100; ++i) {
tree.optimize(1);
tree.show();
usleep(1000*100);
}
}
int i = 0; (void) i;
}
#endif

View File

@@ -77,7 +77,7 @@ struct WrapperObs3D {
TEST(BVH, tree) {
BVHDebug<BBox3, BoundingVolumeSphere, Wrapper> tree;
BVH3Debug<BBox3, BoundingVolumeSphere3, Wrapper> tree;
BBox3 bb1(Point3(0,0,0), Point3(1,1,1));
tree.add(bb1);
@@ -94,7 +94,7 @@ TEST(BVH, tree) {
TEST(BVH, tree2) {
BVHDebug<BBox3, BoundingVolumeSphere, Wrapper> tree;
BVH3Debug<BBox3, BoundingVolumeSphere3, Wrapper> tree;
BBox3 bb1(Point3(0,0,0), Point3(1,1,1));
tree.add(bb1);
@@ -111,7 +111,7 @@ TEST(BVH, tree2) {
TEST(BVH, tree3) {
BVHDebug<BBox3, BoundingVolumeSphere, Wrapper> tree;
BVH3Debug<BBox3, BoundingVolumeSphere3, Wrapper> tree;
BBox3 bb1 = BBox3::around(Point3(+0.5, +0.5, 0.0), Point3(0.25, 0.25, 0.25));
tree.add(bb1);
@@ -148,7 +148,7 @@ TEST(BVH, treeMap) {
fac.setFloors({map->floors[3]});
std::vector<Obstacle3D> obs = fac.triangulize();
BVHDebug<Obstacle3D, BoundingVolumeSphere, WrapperObs3D> tree;
BVH3Debug<Obstacle3D, BoundingVolumeSphere3, WrapperObs3D> tree;
for (const Obstacle3D& o : obs) {
tree.add(o);
@@ -171,7 +171,7 @@ TEST(BVH, treeMap) {
TEST(BVH, treeRandom) {
BVHDebug<BBox3, BoundingVolumeSphere, Wrapper> tree;
BVH3Debug<BBox3, BoundingVolumeSphere3, Wrapper> tree;
std::minstd_rand gen;
std::uniform_real_distribution<float> dPos(-4.0, +4.0);

85
tests/geo/TestCircle2.cpp Normal file
View File

@@ -0,0 +1,85 @@
#ifdef WITH_TESTS
#include "../Tests.h"
#include "../../geo/Circle2.h"
TEST(Geo_Circle2, intersect) {
Circle2 c1(Point2(3,2), 1.0);
// left of circle
Ray2 r1(Point2(1,0), Point2(0,1));
ASSERT_FALSE(c1.intersects(r1));
// right of circle
Ray2 r2(Point2(5,0), Point2(0,1));
ASSERT_FALSE(c1.intersects(r2));
// through circle (from bottom)
Ray2 r3(Point2(3,0), Point2(0,1));
ASSERT_TRUE(c1.intersects(r3));
// through circle (from bottom)
Ray2 r4(Point2(3.5,0), Point2(0,1));
ASSERT_TRUE(c1.intersects(r4));
// within circle
Ray2 r5(Point2(3,2), Point2(0,1));
ASSERT_TRUE(c1.intersects(r5));
// through circle (from left)
Ray2 r6(Point2(0,2), Point2(1,0));
ASSERT_TRUE(c1.intersects(r6));
// through circle (from right)
Ray2 r7(Point2(10,2), Point2(-1,0));
ASSERT_TRUE(c1.intersects(r7));
// through circle (from top)
Ray2 r8(Point2(3,10), Point2(0,-1));
ASSERT_TRUE(c1.intersects(r8));
}
TEST(Geo_Circle2, contains) {
Circle2 c(Point2(0,0), 1.01);
ASSERT_TRUE(c.contains(Point2(+1,0)));
ASSERT_TRUE(c.contains(Point2(-1,0)));
ASSERT_TRUE(c.contains(Point2(0,+1)));
ASSERT_TRUE(c.contains(Point2(0,-1)));
ASSERT_FALSE(c.contains(Point2(+1,+1)));
ASSERT_FALSE(c.contains(Point2(-1,-1)));
}
TEST(Geo_Circle2, join) {
// no overlap
Circle2 a1(Point2(-1,0), 0.5);
Circle2 a2(Point2(+1,0), 0.5);
Circle2 a3 = Circle2::join(a1,a2);
ASSERT_EQ(Point2(0,0), a3.center);
ASSERT_NEAR(1.5, a3.radius, 0.01);
// overlap
Circle2 b1(Point2(0,+1), 1.5);
Circle2 b2(Point2(0,-1), 1.5);
Circle2 b3 = Circle2::join(b1,b2);
ASSERT_EQ(Point2(0,0), b3.center);
ASSERT_NEAR(2.5, b3.radius, 0.01);
// within
Circle2 c1(Point2(0,+1), 3.0);
Circle2 c2(Point2(0,-1), 1.0);
Circle2 c3 = Circle2::join(c1,c2);
ASSERT_EQ(c1.center, c3.center);
ASSERT_NEAR(c1.radius, c3.radius, 0.01);
}
#endif

View File

@@ -3,7 +3,7 @@
#include "../Tests.h"
#include "../../geo/Heading.h"
TEST(Heading, diff) {
TEST(Geo_Heading, diff) {
// 180 degree turn
{
@@ -26,7 +26,7 @@ TEST(Heading, diff) {
}
TEST(Heading, mod) {
TEST(Geo_Heading, mod) {
const float d = 0.0001;
@@ -36,7 +36,7 @@ TEST(Heading, mod) {
}
TEST(Heading, ctor) {
TEST(Geo_Heading, ctor) {
// OK
Heading(0);
@@ -54,7 +54,7 @@ TEST(Heading, ctor) {
}
TEST(Heading, eq) {
TEST(Geo_Heading, eq) {
ASSERT_EQ(Heading(0), Heading(0));
ASSERT_EQ(Heading(1), Heading(1));

View File

@@ -3,7 +3,7 @@
#include "../Tests.h"
#include "../../geo/Length.h"
TEST(Length, float) {
TEST(Geo_Length, float) {
static constexpr float delta = 0.00001;
@@ -24,7 +24,7 @@ TEST(Length, float) {
}
TEST(Length, int) {
TEST(Geo_Length, int) {
LengthI l1 = LengthI::m(1.0);
ASSERT_EQ(1, l1.m());

23
tests/geo/TestPoint2.cpp Normal file
View File

@@ -0,0 +1,23 @@
#ifdef WITH_TESTS
#include "../Tests.h"
#include "../../geo/Point2.h"
TEST(Geo_Point2, math) {
Point2 p1(1,2);
p1 += Point2(2,3);
ASSERT_EQ(p1, Point2(3,5));
Point2 p2 = Point2(-2,-1) + p1;
ASSERT_EQ(p2, Point2(1, 4));
p2 -= Point2(1, 2);
ASSERT_EQ(p2, Point2(0,2));
Point2 p3 = Point2(1,2)*2;
ASSERT_EQ(p3, Point2(2,4));
}
#endif

View File

@@ -3,7 +3,7 @@
#include "../Tests.h"
#include "../../geo/Point3.h"
TEST(Point3, math) {
TEST(Geo_Point3, math) {
Point3 p1(1,2,3);
p1 += Point3(2,3,4);

View File

@@ -4,7 +4,7 @@
#include "../../geo/Sphere3.h"
TEST(Sphere3, contains) {
TEST(Geo_Sphere3, contains) {
Sphere3 a(Point3(0,0,0), 10);
@@ -30,31 +30,31 @@ TEST(Sphere3, contains) {
}
TEST(Sphere3, join) {
TEST(Geo_Sphere3, join) {
// no overlap
Sphere3 a1(Point3(-1,0,0), 1);
Sphere3 a2(Point3(+1,0,0), 1);
Sphere3 a3 = Sphere3::join(a1, a2);
ASSERT_EQ(Point3(0,0,0), a3.center);
ASSERT_EQ(2, a3.radius);
ASSERT_NEAR(2, a3.radius, 0.001);
// overlap
Sphere3 b1(Point3(-1,0,0), 1.5);
Sphere3 b2(Point3(+1,0,0), 1.5);
Sphere3 b3 = Sphere3::join(b1, b2);
ASSERT_EQ(Point3(0,0,0), b3.center);
ASSERT_EQ(2.5, b3.radius);
ASSERT_NEAR(2.5, b3.radius, 0.001);
// fully within
Sphere3 c1(Point3(-1,0,0), 3.6);
Sphere3 c2(Point3(+1,0,0), 1.5);
Sphere3 c3 = Sphere3::join(c1, c2);
ASSERT_EQ(c1.center, c3.center);
ASSERT_EQ(c1.radius, c3.radius);
ASSERT_NEAR(c1.radius, c3.radius, 0.001);
Sphere3 c4 = Sphere3::join(c2, c1);
ASSERT_EQ(c1.center, c4.center);
ASSERT_EQ(c1.radius, c4.radius);
ASSERT_NEAR(c1.radius, c4.radius, 0.001);
}

View File

@@ -5,7 +5,7 @@
// https://stackoverflow.com/questions/17458562/efficient-aabb-triangle-intersection-in-c-sharp
// http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/code/tribox3.txt
TEST(Triangle3, intersect) {
TEST(Geo_Triangle3, intersect) {
Point3 dst;

View File

@@ -0,0 +1,37 @@
#ifdef WITH_TESTS
#include "../Tests.h"
#include "../../wifi/estimate/ray2d/WiFiRayTrace2D.h"
#include "../../floorplan/v2/FloorplanReader.h"
#include <fstream>
TEST(RayTrace2, test) {
//std::string file = "/mnt/data/workspaces/raytest2.xml";
//Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(file);
//Floorplan::AccessPoint* ap = map->floors[0]->accesspoints[0];
//std::string file = "/apps/SHL39.xml";
std::string file = "/mnt/data/workspaces/IndoorMap/maps/SHL39.xml";
Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(file);
Floorplan::Floor* floor = map->floors[0];
Floorplan::AccessPoint* ap = floor->accesspoints[4];
// ModelFactory fac(map);
// std::ofstream outOBJ("/tmp/vm/map.obj");
// outOBJ << fac.toOBJ();
// outOBJ.close();
const int gs_cm = 50;
WiFiRaytrace2D rt(floor, gs_cm, ap->pos.xy());
std::chrono::time_point<std::chrono::high_resolution_clock> start = std::chrono::high_resolution_clock::now();
const DataMapSignal& dms = rt.estimate();
std::chrono::time_point<std::chrono::high_resolution_clock> end = std::chrono::high_resolution_clock::now();
auto result = std::chrono::duration_cast<std::chrono::milliseconds>(end-start).count();
std::cout << "it took: " << result << " msec" << std::endl;
}
#endif

View File

@@ -12,7 +12,8 @@ TEST(RayTrace3, test) {
//Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(file);
//Floorplan::AccessPoint* ap = map->floors[0]->accesspoints[0];
std::string file = "/apps/SHL39.xml";
//std::string file = "/apps/SHL39.xml";
std::string file = "/mnt/data/workspaces/IndoorMap/maps/SHL39.xml";
Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(file);
Floorplan::AccessPoint* ap = map->floors[0]->accesspoints[4];

View File

@@ -3,6 +3,7 @@
#include "../../../geo/BBox2.h"
#include <vector>
#include <functional>
template <typename T> class DataMap {

View File

@@ -1,24 +0,0 @@
#ifndef RAY2_H
#define RAY2_H
#include "../../../geo/Point2.h"
struct Ray2 {
/** starting position */
Point2 start;
/** ray direction */
Point2 dir;
/** empty ctor */
Ray2() {;}
/** ctor */
Ray2(const Point2 start, const Point2 dir) : start(start), dir(dir.normalized()) {
;
}
};
#endif // RAY2_H

View File

@@ -4,12 +4,14 @@
#include "../../../geo/Point2.h"
#include "../../../geo/Line2.h"
#include "../../../geo/BBox2.h"
#include "../../../geo/Ray2.h"
#include "../../../floorplan/v2/Floorplan.h"
#include "../../../floorplan/v2/FloorplanHelper.h"
#include "../../../geo/volume/BVHDebug.h"
#include "DataMap2.h"
#include "Ray2.h"
#include "MaterialOptions.h"
#include <random>
@@ -24,6 +26,38 @@
struct Obstacle2D {
Floorplan::Material mat;
Line2 line;
Obstacle2D(Floorplan::Material mat, Line2 line) : mat(mat), line(line) {;}
};
struct Obstacle2DWrapper {
static std::vector<Point2> getVertices(const Obstacle2D& obs) {
return {obs.line.p1, obs.line.p2};
}
static std::vector<Point2> getDebugLines(const Obstacle2D& obs) {
return {obs.line.p1, obs.line.p2};
}
};
struct Hit {
const Obstacle2D* obstacle;
float dist;
Point2 pos;
Point2 normal;
Floorplan::Material material;
bool stopHere = false;
Hit() {;}
Hit(const float dist, const Point2 pos, const Point2 normal) : dist(dist), pos(pos), normal(normal) {;}
};
struct StateRay2 : public Ray2 {
/** already travelled distance from the AP (by all previous rays */
@@ -32,7 +66,7 @@ struct StateRay2 : public Ray2 {
/** attenuation taken since the start */
float totalAttenuation;
void* lastObstacle;
const Obstacle2D* lastObstacle;
int depth = 0;
/** empty ctor */
@@ -51,17 +85,6 @@ struct StateRay2 : public Ray2 {
};
struct Hit {
void* obstacle;
float dist;
Point2 pos;
Point2 normal;
Floorplan::Material material;
bool stopHere = false;
Hit() {;}
Hit(const float dist, const Point2 pos, const Point2 normal) : dist(dist), pos(pos), normal(normal) {;}
};
class WiFiRaytrace2D {
@@ -72,11 +95,13 @@ private:
BBox2 bbox;
Point2 apPos;
BVH2Debug<Obstacle2D, BoundingVolumeCircle2, Obstacle2DWrapper> tree;
DataMapSignal dm;
struct Limit {
static constexpr int RAYS = 2000;
static constexpr int HITS = 11;
static constexpr int HITS = 25;
static constexpr float RSSI = -110;
};
@@ -94,6 +119,34 @@ public:
// allocate
dm.resize(bbox, gs);
// build tree
for (Floorplan::FloorObstacle* fo : floor->obstacles) {
const Floorplan::FloorObstacleLine* line = dynamic_cast<Floorplan::FloorObstacleLine*>(fo);
const Floorplan::FloorObstacleDoor* door = dynamic_cast<Floorplan::FloorObstacleDoor*>(fo);
if (line) {
Obstacle2D obs(line->material, Line2(line->from, line->to));
tree.add(obs, true);
} else if (door) {
Obstacle2D obs(door->material, Line2(door->from, door->to));
tree.add(obs, true);
}
}
// for (int i = 0; i < 200; ++i) {
// tree.optimize(1);
// tree.show(1500, false);
// usleep(1000*100);
// }
// tree.show();
tree.optimize(250);
// int depth = tree.getDepth();
tree.show(1500,false);
}
const DataMapSignal& estimate() {
@@ -139,17 +192,13 @@ private:
// continue?
if (hit.stopHere) {return;}
//const float curLength = ray.totalLength + hit.dist;
//if (curLength > 55) {return;}
if (ray.getRSSI(hit.dist) < Limit::RSSI) {return;}
if (ray.depth > Limit::HITS) {return;}
// apply effects
//reflected(ray, hit);
reflected(ray, hit);
shadowed(ray, hit);
}
static inline float getAttenuation(const Hit& h) {
@@ -208,43 +257,46 @@ private:
}
static inline void hitTest(const Line2& longRay, const Obstacle2D& obs, Hit& nearest) {
Hit getNearestHit(const StateRay2& ray) {
const float minDist = 0.01; // prevent errors hitting the same obstacle twice
// do not hit the last obstacle again
//if (ray.lastObstacle == fo) {continue;}
// get the line
Point2 hit;
if (obs.line.getSegmentIntersection(longRay, hit)) {
const float dist = hit.getDistance(longRay.p1);
if (dist > minDist && dist < nearest.dist) {
nearest.obstacle = &obs;
nearest.dist = dist;
nearest.pos = hit;
nearest.normal = (obs.line.p2 - obs.line.p1).perpendicular().normalized();
nearest.material = obs.mat;
}
}
}
Hit getNearestHit(const StateRay2& ray) const {
Assert::isNear(1.0f, ray.dir.length(), 0.01f, "not normalized!");
const Line2 longRay(ray.start, ray.start + ray.dir*100);
const Line2 longRay(ray.start, ray.start + ray.dir*1000);
const float minDist = 0;//0.01; // prevent errors hitting the same obstacle twice
//const float minDist = 0;//0.01; // prevent errors hitting the same obstacle twice
const float MAX = 999999;
Hit nearest; nearest.dist = MAX;
// check intersection with walls
for (Floorplan::FloorObstacle* fo : floor->obstacles) {
//int hits = 0;
// do not hit the last obstacle again
if (ray.lastObstacle == fo) {continue;}
const auto onHit = [longRay, &nearest] (const Obstacle2D& obs) {
//++hits;
hitTest(longRay, obs, nearest);
};
// get the line
const Floorplan::FloorObstacleLine* line = dynamic_cast<Floorplan::FloorObstacleLine*>(fo);
const Floorplan::FloorObstacleDoor* door = dynamic_cast<Floorplan::FloorObstacleDoor*>(fo);
if (!line && !door) {continue;}
Line2 obstacle;
if (line) {obstacle = Line2(line->from, line->to);}
if (door) {obstacle = Line2(door->from, door->to);}
Point2 hit;
if (obstacle.getSegmentIntersection(longRay, hit)) {
const float dist = hit.getDistance(ray.start);
if (dist > minDist && dist < nearest.dist) {
nearest.obstacle = fo;
nearest.dist = dist;
nearest.pos = hit;
nearest.normal = (obstacle.p2 - obstacle.p1).perpendicular().normalized();
nearest.material = fo->material;
}
}
}
tree.getHits(ray, onHit);
// no hit with floorplan: limit to bounding-box!
if (nearest.dist == MAX) {

View File

@@ -70,6 +70,7 @@ struct StateRay3 : public Ray3 {
StateRay3 leave(const Point3 hitPos, const Obstacle3D* obs) const {
(void) obs;
StateRay3 next = getNext(hitPos);
next.isWithin = nullptr;
return next;
@@ -173,7 +174,7 @@ private:
DataMap3Signal dm;
BVHDebug<Obstacle3D, BoundingVolumeSphere, Obstacle3DWrapper> tree;
BVH3Debug<Obstacle3D, BoundingVolumeSphere3, Obstacle3DWrapper> tree;
struct Limit {
static constexpr int RAYS = 15000;