worked on 2D/3D raytracing

adjusted BVH
improved 2D/3D BVH
new bounding volumes
new test cases
renamed some test-cases for grouping reasons
made GPC header-only using slight adjustments
This commit is contained in:
2017-09-13 08:08:00 +02:00
parent c19d18a3a6
commit 686151b511
38 changed files with 1257 additions and 253 deletions

View File

@@ -1,8 +1,9 @@
#ifndef BBOX2_H
#define BBOX2_H
#ifndef GEO_BBOX2_H
#define GEO_BBOX2_H
#include "Point2.h"
#include "Line2.h"
#include <vector>
class BBox2 {
@@ -105,6 +106,21 @@ public:
p2 += Point2(val, val); // increase maximum
}
/** grow the bbox by the amount given for each dimension */
void growRel(const float val) {
const Point2 center = (p1+p2)/2;
p1 += (p1-center)*val; // decrease minimum
p2 += (p2-center)*val; // increase maximum
}
/** combine two bboxes */
static BBox2 join(const BBox2& bb1, const BBox2& bb2) {
const Point2 min( std::min(bb1.p1.x, bb2.p1.x), std::min(bb1.p1.y, bb2.p1.y) );
const Point2 max( std::max(bb1.p2.x, bb2.p2.x), std::max(bb1.p2.y, bb2.p2.y) );
return BBox2(min, max);
}
};
#endif // BBOX2_H
#endif // GEO_BBOX2_H

View File

@@ -103,6 +103,13 @@ public:
return true;
}
/** combine two bboxes */
static BBox3 join(const BBox3& bb1, const BBox3& bb2) {
const Point3 min( std::min(bb1.p1.x, bb2.p1.x), std::min(bb1.p1.y, bb2.p1.y), std::min(bb1.p1.z, bb2.p1.z) );
const Point3 max( std::max(bb1.p2.x, bb2.p2.x), std::max(bb1.p2.y, bb2.p2.y), std::max(bb1.p2.z, bb2.p2.z) );
return BBox3(min,max);
}
};
#endif // BBOX3_H

304
geo/Circle2.h Normal file
View File

@@ -0,0 +1,304 @@
#ifndef CIRCLE2_H
#define CIRCLE2_H
#include <vector>
#include "Point2.h"
#include "Ray2.h"
#include "../Assertions.h"
//#include <KLib/misc/gnuplot/Gnuplot.h>
//#include <KLib/misc/gnuplot/GnuplotPlot.h>
//#include <KLib/misc/gnuplot/GnuplotPlotElementLines.h>
//#include <KLib/misc/gnuplot/GnuplotPlotElementPoints.h>
struct Circle2 {
Point2 center;
float radius;
public:
/** empty ctor */
Circle2() : center(), radius(0) {;}
/** ctor */
Circle2(const Point2 center, const float radius) : center(center), radius(radius) {;}
/** does this circle contain the given point? */
bool contains(const Point2 p) const {
return center.getDistance(p) <= radius;
}
/** does this circle contain the given point? */
bool containsAll(const std::vector<Point2>& pts) const {
for (const Point2& p : pts) {
if (!contains(p)) {return false;}
}
return true;
}
/** get a point on the circle for the given radians */
Point2 getPointAt(const float rad) const {
return center + Point2(std::cos(rad), std::sin(rad)) * radius;
}
/** does this circle contain the given circle? */
bool contains(const Circle2 c) const {
return (center.getDistance(c.center)+c.radius) <= radius;
}
/** does this circle intersect with the given ray? */
bool intersects(const Ray2 ray) const {
// https://math.stackexchange.com/questions/311921/get-location-of-vector-circle-intersection
const float a = ray.dir.x*ray.dir.x + ray.dir.y*ray.dir.y;
const float b = 2 * ray.dir.x * (ray.start.x-center.x) + 2 * ray.dir.y * (ray.start.y - center.y);
const float c = (ray.start.x-center.x) * (ray.start.x-center.x) + (ray.start.y - center.y)*(ray.start.y - center.y) - radius*radius;
const float discr = b*b - 4*a*c;
return discr >= 0;
}
/** configure this sphere to contain the given point-set */
void adjustToPointSet(const std::vector<Point2>& lst) {
//adjustToPointSetAPX(lst);
adjustToPointSetExact(lst);
// validate
for (const Point2& p : lst) {
Assert::isTrue(this->contains(p), "calculated circle seems incorrect");
}
}
/** combine two circles into a new one containing both */
static Circle2 join(const Circle2& a, const Circle2& b) {
// if one already contains the other, just return it as-is
if (a.contains(b)) {return a;}
if (b.contains(a)) {return b;}
// create both maximum ends
const Point2 out1 = a.center + (a.center-b.center).normalized() * a.radius;
const Point2 out2 = b.center + (b.center-a.center).normalized() * b.radius;
// center is within both ends, so is the radius
Point2 newCen = (out1 + out2) / 2;
float newRad = out1.getDistance(out2) / 2 * 1.0001; // slightly larger to prevent rounding issues
Circle2 res(newCen, newRad);
// check
Assert::isTrue(res.contains(a), "sphere joining error. base-spheres are not contained.");
Assert::isTrue(res.contains(b), "sphere joining error. base-spheres are not contained.");
return res;
}
float getArea() const {
return M_PI * (radius*radius);
}
private:
/*
void show(std::vector<Point2> pts, const Point2 P, const Point2 Q, const Point2 R = Point2(NAN, NAN)) {
static K::Gnuplot gp;
K::GnuplotPlot plot;
K::GnuplotPlotElementPoints gPoints; plot.add(&gPoints); gPoints.setColor(K::GnuplotColor::fromHexStr("#0000ff")); gPoints.setPointSize(1);
K::GnuplotPlotElementLines gLines; plot.add(&gLines);
for (const Point2 p : pts) {
K::GnuplotPoint2 p2(p.x, p.y);
gPoints.add(p2);
}
K::GnuplotPoint2 gP(P.x, P.y);
K::GnuplotPoint2 gQ(Q.x, Q.y);
gLines.addSegment(gP, gQ);
K::GnuplotPoint2 gR(R.x, R.y);
//gLines.addSegment(gP, gR);
gLines.addSegment(gQ, gR);
for (float f = 0; f < M_PI*2; f += 0.1) {
Point2 p = center + Point2(std::cos(f), std::sin(f)) * radius;
K::GnuplotPoint2 gp (p.x, p.y);
gLines.add(gp);
}
gp << "set size ratio -1\n";
gp.draw(plot);
gp.flush();
int i = 0; (void) i;
}
*/
// Graphic Gems 2 - Jon Rokne
void adjustToPointSetExact(const std::vector<Point2>& _lst) {
if (_lst.size() == 2) {
this->center = (_lst[0] + _lst[1]) / 2;
this->radius = _lst[0].getDistance(_lst[1]) / 2 * 1.0001f;
return;
}
std::vector<Point2> lst = _lst;
// find point P having min(p.y)
// NOTE: seems like the original work uses another coordinate system. so we search for max(p.y) instead!
auto compMinY = [] (const Point2 p1, const Point2 p2) {return p1.y < p2.y;};
auto it1 = std::max_element(lst.begin(), lst.end(), compMinY);
Point2 P = *it1;
lst.erase(it1);
// find a point Q such that the angle of the line segment
// PQ with the x axis is minimal
auto compMinAngleX = [&] (const Point2 p1, const Point2 p2) {
const Point2 PQ1 = p1 - P;
const Point2 PQ2 = p2 - P;
const float angle1 = dot(PQ1.normalized(), Point2(0,1));
const float angle2 = dot(PQ2.normalized(), Point2(0,1));
return std::acos(angle1) < std::acos(angle2);
};
auto it2 = std::min_element(lst.begin(), lst.end(), compMinAngleX);
Point2 Q = *it2;
lst.erase(it2);
// get the angle abc which is the angle at "b"
auto angle = [] (const Point2 a, const Point2 b, const Point2 c) {
const Point2 ba = a - b;
const Point2 bc = c - b;
return std::acos(dot(ba.normalized(), bc.normalized()));
};
// TODO: how many loops?
for (size_t xx = 0; xx < lst.size()*10; ++xx) {
auto compMinAnglePRQ = [P,Q,angle] (const Point2 p1, const Point2 p2) {
return std::abs(angle(P,p1,Q)) < std::abs(angle(P,p2,Q));
};
auto it3 = std::min_element(lst.begin(), lst.end(), compMinAnglePRQ);
Point2 R = *it3;
lst.erase(it3);
const float anglePRQ = angle(P,R,Q);
const float angleRPQ = angle(R,P,Q);
const float anglePQR = angle(P,Q,R);
//check for case 1 (angle PRQ is obtuse), the circle is determined
//by two points, P and Q. radius = |(P-Q)/2|, center = (P+Q)/2
if (anglePRQ > M_PI/2) {
this->radius = P.getDistance(Q) / 2 * 1.001f;
this->center = (P+Q)/2;
//if (!containsAll(_lst)) {show(_lst, P, Q, R);}
return;
}
if (angleRPQ > M_PI/2) {
lst.push_back(P);
P = R;
continue;
}
if (anglePQR > M_PI/2) {
lst.push_back(Q);
Q = R;
continue;
}
const Point2 mPQ = (P+Q)/2;
const Point2 mQR = (Q+R)/2;
const float numer = -(-mPQ.y * R.y + mPQ.y * Q.y + mQR.y * R.y - mQR.y * Q.y - mPQ.x * R.x + mPQ.x * Q.x + mQR.x * R.x - mQR.x * Q.x);
const float denom = (-Q.x * R.y + P.x * R.y - P.x * Q.y + Q.y * R.x - P.y * R.x + P.y * Q.x);
const float t = numer / denom;
const float cx = -t * (Q.y - P.y) + mPQ.x;
const float cy = t * (Q.x - P.x) + mPQ.y;
this->center = Point2(cx, cy);
this->radius = this->center.getDistance(P) * 1.001f;
//if (!containsAll(_lst)) {show(_lst, P, Q, R);}
return;
}
throw Exception("should not happen");
}
/*
void adjustToPointSetRefine(const std::vector<Point2>& lst) {
float bestArea = 99999999;
for (size_t i = 0; i < lst.size(); ++i) {
for (size_t j = 0; j < lst.size(); ++j) {
if (i == j) {continue;}
const Point2 center = (lst[i] + lst[j]) / 3;
const float radius = lst[i].getDistance(lst[j]);
const Circle2 test(center, radius);
if (test.containsAll(lst)) {
if (test.getArea() < bestArea) {
bestArea = test.getArea();
this->radius = test.radius;
this->center = test.center;
}
}
}
}
}
*/
void adjustToPointSetAPX(const std::vector<Point2>& lst) {
// NOT OPTIMAL but fast
// calculate the point set's center
Point2 sum(0,0);
for (const Point2 p : lst) {sum += p;}
const Point2 center = sum / lst.size();
// calculate the sphere's radius (maximum distance from center
float radius = 0;
for (const Point2 p : lst) {
const float dist = center.getDistance(p);
if (dist > radius) {radius = dist;}
}
this->radius = radius;
this->center = center;
}
};
#endif // CIRCLE2_H

View File

@@ -68,6 +68,11 @@ struct Point2 {
};
inline float dot(const Point2 p1, const Point2 p2) {
return (p1.x*p2.x) + (p1.y*p2.y);
}
inline void swap(Point2& p1, Point2& p2) {
std::swap(p1.x, p2.x);
std::swap(p1.y, p2.y);

View File

@@ -1,5 +1,5 @@
#ifndef POINT3_H
#define POINT3_H
#ifndef GEO_POINT3_H
#define GEO_POINT3_H
#include "../Assertions.h"
#include <cmath>
@@ -128,4 +128,4 @@ inline Point3 cross(const Point3 a, const Point3 b) {
);
}
#endif // POINT3_H
#endif // GEO_POINT3_H

29
geo/Ray2.h Normal file
View File

@@ -0,0 +1,29 @@
#ifndef GEO_RAY2_H
#define GEO_RAY2_H
#include "Point2.h"
struct Ray2 {
/** starting point */
Point2 start;
/** ray's direction */
Point2 dir;
public:
/** empty */
Ray2() : start(), dir() {
;
}
/** ctor */
Ray2(Point2 start, Point2 dir) : start(start), dir(dir) {
;
}
};
#endif // GEO_RAY2_H

View File

@@ -1,5 +1,5 @@
#ifndef RAY3_H
#define RAY3_H
#ifndef GEO_RAY3_H
#define GEO_RAY3_H
#include "Point3.h"
@@ -25,4 +25,4 @@ public:
};
#endif // RAY3_H
#endif // GEO_RAY3_H

View File

@@ -1,5 +1,5 @@
#ifndef SPHERE3_H
#define SPHERE3_H
#ifndef GEO_SPHERE3_H
#define GEO_SPHERE3_H
#include "Point3.h"
#include "Ray3.h"
@@ -172,7 +172,7 @@ public:
// center is within both ends, so is the radius
Point3 newCen = (out1 + out2) / 2;
float newRad = out1.getDistance(out2) / 2 * 1.001; // slightly larger to prevent rounding issues
float newRad = out1.getDistance(out2) / 2 * 1.0001; // slightly larger to prevent rounding issues
Sphere3 res(newCen, newRad);
// check
@@ -185,4 +185,4 @@ public:
};
#endif // SPHERE3_H
#endif // GEO_SPHERE3_H

View File

@@ -4,29 +4,36 @@
#include <vector>
#include <functional>
#include "../Ray2.h"
#include "../Ray3.h"
#include "BoundingVolume.h"
#include "BoundingVolumeAABB.h"
#include "BoundingVolumeSphere.h"
#include "BoundingVolumeAABB2.h"
#include "BoundingVolumeCircle2.h"
#include "BoundingVolumeAABB3.h"
#include "BoundingVolumeSphere3.h"
template <typename Element, typename Volume, typename Wrapper> class BVH {
template <typename Element, typename Ray, typename Point, typename Volume, typename Wrapper> class BVH {
protected:
/** one node within the tree */
struct BVHNode {
bool isLeaf = true;
bool isLeaf;
bool check;
Volume boundingVolume;
std::vector<BVHNode*> childNodes;
BVHNode(bool isLeaf = false) : isLeaf(isLeaf) {;}
BVHNode(bool isLeaf = false, bool check = true) : isLeaf(isLeaf), check(check) {;}
};
/** one leaf within the tree */
struct BVHLeaf : public BVHNode {
Element element;
BVHLeaf(const Element& e) : BVHNode(true), element(e) {;}
BVHLeaf(const Element& e, const bool check) : BVHNode(true, check), element(e) {;}
};
/** the tree's root */
@@ -40,10 +47,10 @@ public:
}
/** add a new volume to the tree */
void add(const Element& element) {
void add(const Element& element, const bool leafCheck = true) {
// create a new leaf for this element
BVHLeaf* leaf = new BVHLeaf(element);
BVHLeaf* leaf = new BVHLeaf(element, leafCheck);
// get the element's boundin volume
leaf->boundingVolume = getBoundingVolume(element);
@@ -63,17 +70,17 @@ public:
return max;
}
void getHits(const Ray3 ray, std::function<void(const Element&)> func) const {
//int tests = 0; int leafs = 0;
void getHits(const Ray& ray, const std::function<void(const Element&)>& func) const {
getHits(ray, &root, func);
//std::cout << tests << " " << leafs << std::endl;
}
void getHits(const Ray3 ray, const BVHNode* node, std::function<void(const Element&)> func) const {
// this one has to be as fast as possible!
static void getHits(const Ray& ray, const BVHNode* node, const std::function<void(const Element&)>& func) {
for (const BVHNode* sub : node->childNodes) {
if (sub->boundingVolume.intersects(ray)) {
if (!sub->check || sub->boundingVolume.intersects(ray)) {
if (sub->isLeaf) {
BVHLeaf* leaf = (BVHLeaf*)(sub); // TODO: cast
const BVHLeaf* leaf = static_cast<const BVHLeaf*>(sub);
func(leaf->element);
} else {
getHits(ray, sub, func);
@@ -82,8 +89,50 @@ public:
}
}
/** get the tree's depth */
int getDepth() const {
return getDepth(&root, 1);
}
private:
/** call the given function for each leaf within the given subtree */
void forEachLeaf(const BVHNode* n, std::function<void(const BVHNode*)> func) const {
if (n->isLeaf) {
func(n);
} else {
for (BVHNode* child : n->childNodes) {
forEachLeaf(child, func);
}
}
}
/** determine/approximate a new bounding volume around n1+n2 */
Volume getVolAround(const BVHNode* n1, const BVHNode* n2) const {
//return getVolAroundExact(n1, n2);
return getVolAroundAPX(n1, n2);
}
/** determine the bounding-volume around n1 and n2 by (slowly) calculating a new, exact volume based on all leaf-elements */
Volume getVolAroundExact(const BVHNode* n1, const BVHNode* n2) const {
std::vector<Point> verts;
auto onLeaf = [&] (const BVHNode* n) {
BVHLeaf* leaf = (BVHLeaf*) n;
std::vector<Point> subVerts = Wrapper::getVertices(leaf->element);
verts.insert(verts.end(), subVerts.begin(), subVerts.end());
};
forEachLeaf(n1, onLeaf);
forEachLeaf(n2, onLeaf);
return Volume::fromVertices(verts);
}
/** approximate the bounding-volume around n1 and n2 by (quickly) joining their current volumes. the result might be unnecessarily large */
Volume getVolAroundAPX(const BVHNode* n1, const BVHNode* n2) const {
return Volume::join(n1->boundingVolume, n2->boundingVolume);
}
bool combineBest() {
// nothing to do?
@@ -104,7 +153,7 @@ private:
BVHNode* n1 = root.childNodes[i];
BVHNode* n2 = root.childNodes[j];
const Volume newVol = Volume::join(n1->boundingVolume, n2->boundingVolume);
const Volume newVol = getVolAround(n1,n2);
const float newVolSize = newVol.getVolumeSize();
if (newVolSize < best.volSize) {
best.vol = newVol;
@@ -226,13 +275,32 @@ private:
}
int getDepth(const BVHNode* node, const int cur) const {
if (node->isLeaf) {
return cur;
} else {
int res = cur;
for (const BVHNode* sub : node->childNodes) {
const int subDepth = getDepth(sub, cur+1);
if (subDepth > res) {res = subDepth;}
}
return res;
}
}
/** get a bounding-volume for the given element */
Volume getBoundingVolume(const Element& element) {
const std::vector<Point3> verts = Wrapper::getVertices(element);
const std::vector<Point> verts = Wrapper::getVertices(element);
return Volume::fromVertices(verts);
}
};
template <typename Element, typename Volume, typename Wrapper> class BVH3 : public BVH<Element, Ray3, Point3, Volume, Wrapper> {
};
template <typename Element, typename Volume, typename Wrapper> class BVH2 : public BVH<Element, Ray2, Point2, Volume, Wrapper> {
};

View File

@@ -2,39 +2,52 @@
#define BVHDEBUG_H
#include "BVH.h"
#include <KLib/misc/gnuplot/Gnuplot.h>
#include <KLib/misc/gnuplot/GnuplotSplot.h>
#include <KLib/misc/gnuplot/GnuplotSplotElementPoints.h>
#include <KLib/misc/gnuplot/GnuplotSplotElementColorPoints.h>
#include <KLib/misc/gnuplot/GnuplotSplotElementLines.h>
#include <KLib/misc/gnuplot/Gnuplot.h>
#include <KLib/misc/gnuplot/GnuplotPlot.h>
#include <KLib/misc/gnuplot/GnuplotPlotElementPoints.h>
#include <KLib/misc/gnuplot/GnuplotPlotElementColorLines.h>
#include <KLib/misc/gnuplot/GnuplotPlotElementLines.h>
#include "../BBox3.h"
#include <random>
/** adds some debug helpers to the BVH */
template <typename Element, typename Volume, typename Wrapper> class BVHDebug : public BVH<Element, Volume, Wrapper> {
///** adds some debug helpers to the BVH */
//template <typename Element, typename Ray, typename Point, typename Volume, typename Wrapper> class BVHDebug : public BVH<Element, Ray, Point, Volume, Wrapper> {
//};
template <typename Element, typename Volume, typename Wrapper> class BVH3Debug : public BVH<Element, Ray3, Point3, Volume, Wrapper> {
using BVHNode = typename BVH<Element, Ray3, Point3, Volume, Wrapper>::BVHNode;
using BVHLeaf = typename BVH<Element, Ray3, Point3, Volume, Wrapper>::BVHLeaf;
using BVHNode = typename BVH<Element, Volume, Wrapper>::BVHNode;
using BVHLeaf = typename BVH<Element, Volume, Wrapper>::BVHLeaf;
public:
// std::vecto<std::string> colors {
// "#888888", "#888800", "#008888", "#880088", "#ee0000", "#00ee00", "#0000ee"
// };
void show(int maxPts = 1500, bool showLeafs = true) {
std::stringstream out;
static K::Gnuplot gp;
K::GnuplotSplot plot;
K::GnuplotSplotElementColorPoints pVol; plot.add(&pVol); //pVol.setColor(K::GnuplotColor::fromRGB(128,128,128));
K::GnuplotSplotElementPoints pElemPoints; plot.add(&pElemPoints); pElemPoints.setColor(K::GnuplotColor::fromRGB(0,0,255));
K::GnuplotSplotElementLines pElemLines; plot.add(&pElemLines); pElemLines.getStroke().setColor(K::GnuplotColor::fromRGB(0,0,255));
const int depth = recurse(maxPts, showLeafs, 0, &this->root, pVol, pElemPoints, pElemLines);
K::GnuplotSplotElementColorPoints pVol; plot.add(&pVol); //pVol.setColor(K::GnuplotColor::fromRGB(128,128,128));
K::GnuplotSplotElementPoints pElemPoints; plot.add(&pElemPoints); pElemPoints.setColor(K::GnuplotColor::fromRGB(0,0,255));
K::GnuplotSplotElementLines pElemLines; plot.add(&pElemLines); pElemLines.getStroke().setColor(K::GnuplotColor::fromRGB(0,0,255));
plot.getAxisCB().setRange(0, depth);
const int maxDepth = this->getDepth();
recurse(maxPts, showLeafs, 0, &this->root, pVol, pElemPoints, pElemLines);
plot.getAxisCB().setRange(0, maxDepth);
gp << "set view equal xyz\n";
gp.draw(plot);
@@ -44,6 +57,31 @@ public:
private:
Point3 getRandomPoint(BoundingVolumeSphere3 sphere) {
static std::minstd_rand gen;
std::uniform_real_distribution<float> dist(-1, +1);
Point3 dir = Point3(dist(gen), dist(gen), dist(gen)).normalized() * sphere.radius;
return sphere.center + dir;
}
void addLines(const Element& elem, K::GnuplotSplotElementLines& elemLines) {
std::vector<Point3> pts = Wrapper::getDebugLines(elem);
for (size_t i = 0; i< pts.size(); i+=2) {
const Point3 p1 = pts[i+0];
const Point3 p2 = pts[i+1];
K::GnuplotPoint3 gp1(p1.x, p1.y, p1.z);
K::GnuplotPoint3 gp2(p2.x, p2.y, p2.z);
elemLines.addSegment(gp1, gp2);
}
}
int recurse(int maxPts, bool showLeafs, int curDepth, const BVHNode* node, K::GnuplotSplotElementColorPoints& vol, K::GnuplotSplotElementPoints& pElemPoints, K::GnuplotSplotElementLines& elemLines) {
int resDepth = curDepth;
@@ -76,24 +114,53 @@ private:
}
Point3 getRandomPoint(BoundingVolumeSphere sphere) {
static std::minstd_rand gen;
std::uniform_real_distribution<float> dist(-1, +1);
Point3 dir = Point3(dist(gen), dist(gen), dist(gen)).normalized() * sphere.radius;
return sphere.center + dir;
};
template <typename Element, typename Volume, typename Wrapper> class BVH2Debug : public BVH<Element, Ray2, Point2, Volume, Wrapper> {
using BVHNode = typename BVH<Element, Ray2, Point2, Volume, Wrapper>::BVHNode;
using BVHLeaf = typename BVH<Element, Ray2, Point2, Volume, Wrapper>::BVHLeaf;
public:
void show(int maxPts = 1500, bool showLeafs = true) {
std::stringstream out;
static K::Gnuplot gp;
K::GnuplotPlot plot;
K::GnuplotPlotElementColorLines pVolLines; plot.add(&pVolLines);
K::GnuplotPlotElementPoints pElemPoints; plot.add(&pElemPoints); pElemPoints.setColor(K::GnuplotColor::fromRGB(0,0,255));
K::GnuplotPlotElementLines pElemLines; plot.add(&pElemLines); pElemLines.getStroke().setColor(K::GnuplotColor::fromRGB(0,0,255));
const int maxDepth = this->getDepth();
recurse(maxDepth, showLeafs, 0, &this->root, plot, pVolLines, pElemPoints, pElemLines);
plot.getObjects().reOrderByZIndex();
plot.getAxisCB().setRange(0, maxDepth);
gp << "set size ratio -1\n";
gp.draw(plot);
gp.flush();
}
void addLines(const Element& elem, K::GnuplotSplotElementLines& elemLines) {
private:
std::vector<Point3> pts = Wrapper::getDebugLines(elem);
void addLines(const Element& elem, K::GnuplotPlotElementLines& elemLines) {
std::vector<Point2> pts = Wrapper::getDebugLines(elem);
for (size_t i = 0; i< pts.size(); i+=2) {
const Point3 p1 = pts[i+0];
const Point3 p2 = pts[i+1];
const Point2 p1 = pts[i+0];
const Point2 p2 = pts[i+1];
K::GnuplotPoint3 gp1(p1.x, p1.y, p1.z);
K::GnuplotPoint3 gp2(p2.x, p2.y, p2.z);
K::GnuplotPoint2 gp1(p1.x, p1.y);
K::GnuplotPoint2 gp2(p2.x, p2.y);
elemLines.addSegment(gp1, gp2);
@@ -101,6 +168,75 @@ private:
}
std::vector<std::string> colors = {
"#888800", "#444400", "#008888", "#004444", "#880088", "#440044", "#ee0000", "#880000", "#00ee00", "#008800", "#0000ee", "#000088",
"#888800", "#444400", "#008888", "#004444", "#880088", "#440044", "#ee0000", "#880000", "#00ee00", "#008800", "#0000ee", "#000088",
"#888800", "#444400", "#008888", "#004444", "#880088", "#440044", "#ee0000", "#880000", "#00ee00", "#008800", "#0000ee", "#000088"
};
void showVolume(const BoundingVolumeCircle2& circle, int maxDepth, int curDepth, K::GnuplotPlot& plot, K::GnuplotPlotElementColorLines& pVolLines) {
K::GnuplotObjectPolygon* poly = new K::GnuplotObjectPolygon();
for (int i = 0; i < 20; ++i) {
const float f = M_PI*2 * i / 19;
const Point2 p = circle.getPointAt(f);
poly->add(K::GnuplotCoordinate2(p.x, p.y, K::GnuplotCoordinateSystem::FIRST));
poly->getFill().setColor(K::GnuplotColor::fromHexStr(colors[maxDepth-curDepth]));
poly->getFill().setStyle(K::GnuplotFillStyle::SOLID);
poly->setZIndex(curDepth);
}
plot.getObjects().add(poly);
}
void showVolume(const BoundingVolumeAABB2& _aabb, int maxDepth, int curDepth, K::GnuplotPlot& plot, K::GnuplotPlotElementColorLines& pVolLines) {
BBox2 bbox2 = _aabb;
bbox2.grow( (10-curDepth) / 100.0f );
// pVolLines.add(K::GnuplotPoint2(bbox2.getMin().x, bbox2.getMin().y), curDepth);
// pVolLines.add(K::GnuplotPoint2(bbox2.getMax().x, bbox2.getMin().y), curDepth);
// pVolLines.add(K::GnuplotPoint2(bbox2.getMax().x, bbox2.getMax().y), curDepth);
// pVolLines.add(K::GnuplotPoint2(bbox2.getMin().x, bbox2.getMax().y), curDepth);
// pVolLines.add(K::GnuplotPoint2(bbox2.getMin().x, bbox2.getMin().y), curDepth);
// pVolLines.splitFace();
K::GnuplotObjectPolygon* poly = new K::GnuplotObjectPolygon();
poly->getStroke().setColor(K::GnuplotColor::fromHexStr(colors[maxDepth-curDepth]));
//poly->getFill().setColor(K::GnuplotColor::fromHexStr(colors[maxDepth-curDepth]));
//poly->getFill().setStyle(K::GnuplotFillStyle::SOLID);
poly->add(K::GnuplotCoordinate2(bbox2.getMin().x, bbox2.getMin().y, K::GnuplotCoordinateSystem::FIRST));
poly->add(K::GnuplotCoordinate2(bbox2.getMax().x, bbox2.getMin().y, K::GnuplotCoordinateSystem::FIRST));
poly->add(K::GnuplotCoordinate2(bbox2.getMax().x, bbox2.getMax().y, K::GnuplotCoordinateSystem::FIRST));
poly->add(K::GnuplotCoordinate2(bbox2.getMin().x, bbox2.getMax().y, K::GnuplotCoordinateSystem::FIRST));
poly->close();
poly->setZIndex(curDepth);
plot.getObjects().add(poly);
}
int recurse(int maxDepth, bool showLeafs, int curDepth, const BVHNode* node, K::GnuplotPlot& plot, K::GnuplotPlotElementColorLines& pVolLines, K::GnuplotPlotElementPoints& pElemPoints, K::GnuplotPlotElementLines& elemLines) {
int resDepth = curDepth;
for (BVHNode* sub : node->childNodes) {
resDepth = recurse(maxDepth, showLeafs, curDepth+1, sub, plot, pVolLines, pElemPoints, elemLines);
}
if (!node->isLeaf || showLeafs) {
if (node != &this->root) {
//const int numPts = maxPts / (curDepth+1);
showVolume(node->boundingVolume, maxDepth, curDepth, plot, pVolLines);
}
}
if (node->isLeaf) {
BVHLeaf* leaf = (BVHLeaf*) node;
std::vector<Point2> verts = Wrapper::getVertices(leaf->element);
for (const Point2 p : verts) {
pElemPoints.add(K::GnuplotPoint2(p.x, p.y));
}
addLines(leaf->element, elemLines);
}
return resDepth;
}
};
#endif // BVHDEBUG_H

View File

@@ -0,0 +1,36 @@
#ifndef BOUNDINGVOLUMEAABB2_H
#define BOUNDINGVOLUMEAABB2_H
#include <vector>
#include "BoundingVolume.h"
#include "../BBox2.h"
class BoundingVolumeAABB2 : public BBox2 {
public:
BoundingVolumeAABB2() {;}
BoundingVolumeAABB2(const BBox2& bb) : BBox2(bb) {;}
float getVolumeSize() const {
const float dx = getMax().x - getMin().x;
const float dy = getMax().y - getMin().y;
return (dx*dy);
}
/** construct a volume around the given point-set */
static BoundingVolumeAABB2 fromVertices(const std::vector<Point2>& verts) {
BoundingVolumeAABB2 bvs;
for (const Point2 p : verts) {bvs.add(p);}
return bvs;
}
static BoundingVolumeAABB2 join(const BoundingVolumeAABB2 a, const BoundingVolumeAABB2 b) {
return BoundingVolumeAABB2(BBox2::join(a, b));
}
};
#endif // BOUNDINGVOLUMEAABB2_H

View File

@@ -1,4 +0,0 @@
#ifndef BOUNDINGVOLUMEBOX_H
#define BOUNDINGVOLUMEBOX_H
#endif // BOUNDINGVOLUMEBOX_H

View File

@@ -0,0 +1,38 @@
#ifndef BOUDINGVOLUMECIRCLE2_H
#define BOUDINGVOLUMECIRCLE2_H
#include <vector>
#include "BoundingVolume.h"
#include "../Circle2.h"
class BoundingVolumeCircle2 : public Circle2 {
public:
BoundingVolumeCircle2() {;}
BoundingVolumeCircle2(const Circle2& c) : Circle2(c) {;}
float getVolumeSize() const {
return M_PI * (radius*radius);
}
bool intersects(const Ray2 ray) const {
return Circle2::intersects(ray);
}
/** construct a volume around the given point-set */
static BoundingVolumeCircle2 fromVertices(const std::vector<Point2>& verts) {
BoundingVolumeCircle2 bvs;
bvs.adjustToPointSet(verts);
return bvs;
}
static BoundingVolumeCircle2 join(const BoundingVolumeCircle2 a, const BoundingVolumeCircle2 b) {
return BoundingVolumeCircle2(Circle2::join(a, b));
}
};
#endif // BOUDINGVOLUMECIRCLE2_H

View File

@@ -1,4 +0,0 @@
#ifndef BOUNDINGVOLUMEHIERARCHY_H
#define BOUNDINGVOLUMEHIERARCHY_H
#endif // BOUNDINGVOLUMEHIERARCHY_H

View File

@@ -5,13 +5,13 @@
#include "../Sphere3.h"
#include "../Point3.h"
class BoundingVolumeSphere : public BoundingVolume, public Sphere3 {
class BoundingVolumeSphere3 : public BoundingVolume, public Sphere3 {
public:
BoundingVolumeSphere() {;}
BoundingVolumeSphere3() {;}
BoundingVolumeSphere(const Sphere3& s) : Sphere3(s) {;}
BoundingVolumeSphere3(const Sphere3& s) : Sphere3(s) {;}
float getVolumeSize() const {
return (4.0f / 3.0f) * M_PI * (radius*radius*radius);
@@ -27,25 +27,25 @@ public:
/** does the volume intersect with the given volume? */
bool intersects(const BoundingVolume& other) const {
const BoundingVolumeSphere& sphere = (const BoundingVolumeSphere&) other;
const BoundingVolumeSphere3& sphere = (const BoundingVolumeSphere3&) other;
return Sphere3::intersects(sphere);
}
/** does the volume contain the given volume? */
bool contains(const BoundingVolume& other) const {
const BoundingVolumeSphere& sphere = (const BoundingVolumeSphere&) other;
const BoundingVolumeSphere3& sphere = (const BoundingVolumeSphere3&) other;
return Sphere3::contains(sphere);
}
/** construct a volume around the given point-set */
static BoundingVolumeSphere fromVertices(const std::vector<Point3>& verts) {
BoundingVolumeSphere bvs;
static BoundingVolumeSphere3 fromVertices(const std::vector<Point3>& verts) {
BoundingVolumeSphere3 bvs;
bvs.adjustToPointSet(verts);
return bvs;
}
static BoundingVolumeSphere join(const BoundingVolumeSphere a, const BoundingVolumeSphere b) {
return BoundingVolumeSphere(Sphere3::join(a, b));
static BoundingVolumeSphere3 join(const BoundingVolumeSphere3 a, const BoundingVolumeSphere3 b) {
return BoundingVolumeSphere3(Sphere3::join(a, b));
}
};