many changes :P
This commit is contained in:
199
grid/Grid.h
199
grid/Grid.h
@@ -9,6 +9,9 @@
|
||||
#include "GridNode.h"
|
||||
#include <iostream>
|
||||
|
||||
#include <KLib/Assertions.h>
|
||||
#include "../geo/BBox3.h"
|
||||
|
||||
/**
|
||||
* grid of the given grid-size, storing some value which
|
||||
* extends GridPoint
|
||||
@@ -47,6 +50,11 @@ public:
|
||||
*/
|
||||
int add(const T& elem) {
|
||||
assertAligned(elem); // assert that the to-be-added element is aligned to the grid
|
||||
return addUnaligned(elem);
|
||||
}
|
||||
|
||||
/** add the given (not necessarly aligned) element to the grid */
|
||||
int addUnaligned(const T& elem) {
|
||||
const int idx = nodes.size(); // next free index
|
||||
const UID uid = getUID(elem); // get the UID for this new element
|
||||
nodes.push_back(elem); // add it to the grid
|
||||
@@ -55,27 +63,39 @@ public:
|
||||
return idx; // done
|
||||
}
|
||||
|
||||
/** connect (uni-dir) i1 -> i2 */
|
||||
void connectUniDir(const int idx1, const int idx2) {
|
||||
connectUniDir(nodes[idx1], nodes[idx2]);
|
||||
}
|
||||
|
||||
/** connect (uni-dir) i1 -> i2 */
|
||||
void connectUniDir(T& n1, const T& n2) {
|
||||
n1._neighbors[n1._numNeighbors] = n2._idx;
|
||||
++n1._numNeighbors;
|
||||
if (n1._numNeighbors > 12) {
|
||||
int i = 0;
|
||||
}
|
||||
_assertBetween(n1._numNeighbors, 0, 12, "number of neighbors out of bounds!");
|
||||
}
|
||||
|
||||
/**
|
||||
* connect (bi-directional) the two provided nodes
|
||||
* @param idx1 index of the first element
|
||||
* @param idx2 index of the second element
|
||||
*/
|
||||
void connect(const int idx1, const int idx2) {
|
||||
T& n1 = nodes[idx1]; // get the first element
|
||||
T& n2 = nodes[idx2]; // get the second element
|
||||
connect(n1, n2);
|
||||
void connectBiDir(const int idx1, const int idx2) {
|
||||
connectBiDir(nodes[idx1], nodes[idx2]);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* connect (bi-directional) the two provided nodes
|
||||
* @param n1 the first node
|
||||
* @param n2 the second node
|
||||
*/
|
||||
void connect(T& n1, T& n2) {
|
||||
n1._neighbors[n1._numNeighbors] = n2._idx; // add them both as neighbors
|
||||
n2._neighbors[n2._numNeighbors] = n1._idx;
|
||||
++n1._numNeighbors; // increment the neighbor-counter
|
||||
++n2._numNeighbors;
|
||||
void connectBiDir(T& n1, T& n2) {
|
||||
connectUniDir(n1, n2);
|
||||
connectUniDir(n2, n1);
|
||||
}
|
||||
|
||||
/** get the number of contained nodes */
|
||||
@@ -93,6 +113,24 @@ public:
|
||||
return e._numNeighbors;
|
||||
}
|
||||
|
||||
/** get the n-th neighbor for the given node */
|
||||
T& getNeighbor(const int nodeIdx, const int nth) const {
|
||||
const T& node = nodes[nodeIdx];
|
||||
return getNeighbor(node, nth);
|
||||
}
|
||||
|
||||
/** get the n-th neighbor for the given node */
|
||||
T& getNeighbor(const T& node, const int nth) const {
|
||||
const T& neighbor = nodes[node._neighbors[nth]];
|
||||
return (T&) neighbor;
|
||||
}
|
||||
|
||||
/** do we have a center-point the given point belongs to? */
|
||||
bool hasNodeFor(const GridPoint& p) const {
|
||||
const UID uid = getUID(p);
|
||||
return (hashes.find(uid) != hashes.end());
|
||||
}
|
||||
|
||||
/** get the center-node the given Point belongs to */
|
||||
const T& getNodeFor(const GridPoint& p) {
|
||||
const UID uid = getUID(p);
|
||||
@@ -123,10 +161,151 @@ public:
|
||||
}
|
||||
|
||||
/** array access */
|
||||
const T& operator [] (const int idx) const {
|
||||
T& operator [] (const int idx) {
|
||||
return nodes[idx];
|
||||
}
|
||||
|
||||
/** disconnect the two nodes (bidirectional) */
|
||||
void disconnectBiDir(const int idx1, const int idx2) {
|
||||
disconnectBiDir(nodes[idx1], nodes[idx2]);
|
||||
}
|
||||
|
||||
/** disconnect the two nodes (bidirectional) */
|
||||
void disconnectBiDir(T& n1, T& n2) {
|
||||
disconnectUniDir(n1, n2);
|
||||
disconnectUniDir(n2, n1);
|
||||
}
|
||||
|
||||
/** remove the connection from n1 to n2 (not the other way round!) */
|
||||
void disconnectUniDir(T& n1, T& n2) {
|
||||
for (int n = 0; n < n1._numNeighbors; ++n) {
|
||||
if (n1._neighbors[n] == n2._idx) {
|
||||
arrayRemove(n1._neighbors, n, n1._numNeighbors);
|
||||
--n1._numNeighbors;
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** remove the given array-index by moving all follwing elements down by one */
|
||||
template <typename X> void arrayRemove(X* arr, const int idxToRemove, const int arrayLen) {
|
||||
for (int i = idxToRemove+1; i < arrayLen; ++i) {
|
||||
arr[i-1] = arr[i];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* mark the given node for deletion
|
||||
* see: cleanup()
|
||||
*/
|
||||
void remove(const int idx) {
|
||||
remove(nodes[idx]);
|
||||
}
|
||||
|
||||
void remove(T& node) {
|
||||
|
||||
// disconnect from all neighbors
|
||||
while (node._numNeighbors) {
|
||||
disconnectBiDir(node._idx, node._neighbors[0]);
|
||||
}
|
||||
|
||||
// remove from hash-list
|
||||
hashes.erase(getUID(node));
|
||||
|
||||
// mark for deleteion (see: cleanup())
|
||||
node._idx = -1;
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* remove all nodes, marked for deletion.
|
||||
* BEWARE: this will invalidate all indices used externally!
|
||||
*/
|
||||
void cleanup() {
|
||||
|
||||
for (size_t i = 0; i < nodes.size(); ++i) {
|
||||
if (nodes[i]._idx == -1) {
|
||||
nodes.erase(nodes.begin()+i);
|
||||
moveDown(i);
|
||||
--i;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void moveDown(const int idx) {
|
||||
for (size_t i = 0; i < nodes.size(); ++i) {
|
||||
if (nodes[i]._idx >= idx) {--nodes[i]._idx;}
|
||||
for (int n = 0; n < nodes[i]._numNeighbors; ++n) {
|
||||
if (nodes[i]._neighbors[n] >= idx) {--nodes[i]._neighbors[n];}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
class NeighborIter : std::iterator<std::input_iterator_tag, int> {
|
||||
private:
|
||||
Grid<gridSize_cm, T>& grid;
|
||||
int nodeIdx;
|
||||
int nIdx;
|
||||
public:
|
||||
NeighborIter(Grid<gridSize_cm, T>& grid, const int nodeIdx, const int nIdx) : grid(grid), nodeIdx(nodeIdx), nIdx(nIdx) {;}
|
||||
NeighborIter& operator++() {++nIdx; return *this;}
|
||||
NeighborIter operator++(int) {NeighborIter tmp(*this); operator++(); return tmp;}
|
||||
bool operator==(const NeighborIter& rhs) {return nodeIdx == rhs.nodeIdx && nIdx == rhs.nIdx;}
|
||||
bool operator!=(const NeighborIter& rhs) {return nodeIdx != rhs.nodeIdx || nIdx != rhs.nIdx;}
|
||||
T& operator*() {return (T&) grid.nodes[nodeIdx]._neighbors[nIdx];}
|
||||
};
|
||||
|
||||
class NeighborForEach {
|
||||
private:
|
||||
Grid<gridSize_cm, T>& grid;
|
||||
int nodeIdx;
|
||||
public:
|
||||
NeighborForEach(Grid<gridSize_cm, T>& grid, const int nodeIdx) : grid(grid), nodeIdx(nodeIdx) {;}
|
||||
NeighborIter begin() {return NeighborIter(grid, nodeIdx, 0);}
|
||||
NeighborIter end() {return NeighborIter(grid, nodeIdx, grid[nodeIdx]._numNeighbors);}
|
||||
};
|
||||
|
||||
NeighborForEach neighbors(const int idx) {
|
||||
return neighbors(nodes[idx]);
|
||||
}
|
||||
|
||||
NeighborForEach neighbors(const T& node) {
|
||||
return NeighborForEach(*this, node._idx);
|
||||
}
|
||||
|
||||
/** get the grid's bounding-box. EXPENSIVE! */
|
||||
BBox3 getBBox() const {
|
||||
BBox3 bb;
|
||||
for (const T& n : nodes) {
|
||||
bb.add( Point3(n.x_cm, n.y_cm, n.z_cm) );
|
||||
}
|
||||
return bb;
|
||||
}
|
||||
|
||||
int kdtree_get_point_count() const {
|
||||
return nodes.size();
|
||||
}
|
||||
|
||||
template <class BBOX> bool kdtree_get_bbox(BBOX& bb) const { return false; }
|
||||
|
||||
inline float kdtree_get_pt(const size_t idx, const int dim) const {
|
||||
const T& p = nodes[idx];
|
||||
if (dim == 0) {return p.x_cm;}
|
||||
if (dim == 1) {return p.y_cm;}
|
||||
if (dim == 2) {return p.z_cm;}
|
||||
throw 1;
|
||||
}
|
||||
|
||||
inline float kdtree_distance(const float* p1, const size_t idx_p2, size_t) const {
|
||||
const float d0 = p1[0] - nodes[idx_p2].x_cm;
|
||||
const float d1 = p1[1] - nodes[idx_p2].y_cm;
|
||||
const float d2 = p1[2] - nodes[idx_p2].z_cm;
|
||||
return (d0*d0) + (d1*d1) + (d2*d2);
|
||||
}
|
||||
|
||||
|
||||
|
||||
private:
|
||||
|
||||
/** asssert that the given element is aligned to the grid */
|
||||
|
||||
@@ -4,6 +4,9 @@
|
||||
#include "GridNodeBBox.h"
|
||||
#include "GridPoint.h"
|
||||
|
||||
template<int, typename> class Grid;
|
||||
|
||||
|
||||
/**
|
||||
* INTERNAL DATASTRUCTURE
|
||||
* this data-structure is internally used by the Grid
|
||||
@@ -17,17 +20,26 @@ class GridNode {
|
||||
/** INTERNAL: array-index */
|
||||
int _idx = -1;
|
||||
|
||||
/** INTERNAL: store neighbors (via index) */
|
||||
/** INTERNAL: number of neighbors */
|
||||
int _numNeighbors = 0;
|
||||
|
||||
/** INTERNAL: number of neighbors */
|
||||
int _neighbors[10] = {};
|
||||
/** INTERNAL: store neighbors (via index) */
|
||||
int _neighbors[12] = {};
|
||||
|
||||
public:
|
||||
|
||||
GridNode() {;}
|
||||
|
||||
/** get the node's index within its grid */
|
||||
int getIdx() const {return _idx;}
|
||||
|
||||
/** get the number of neighbors for this node */
|
||||
int getNumNeighbors() const {return _numNeighbors;}
|
||||
|
||||
/** get the n-th neighbor for this node */
|
||||
template <int gridSize_cm, typename T> inline T& getNeighbor(const int nth, const Grid<gridSize_cm, T>& grid) const {
|
||||
return grid.getNeighbor(_idx, nth);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
@@ -2,43 +2,21 @@
|
||||
#define GRIDNODEBBOX_H
|
||||
|
||||
#include "GridPoint.h"
|
||||
#include "../geo/Line2D.h"
|
||||
|
||||
#include "../geo/BBox2.h"
|
||||
|
||||
/**
|
||||
* describes the 2D (one floor)
|
||||
* bounding-box for one node on the grid
|
||||
*/
|
||||
struct GridNodeBBox {
|
||||
|
||||
/** smaller half */
|
||||
float x1_cm, y1_cm;
|
||||
|
||||
/** larger half */
|
||||
float x2_cm, y2_cm;
|
||||
struct GridNodeBBox : public BBox2 {
|
||||
|
||||
/** ctor */
|
||||
GridNodeBBox(const GridPoint& center, const int gridSize_cm) {
|
||||
x1_cm = center.x_cm - gridSize_cm/2; // smaller half
|
||||
y1_cm = center.y_cm - gridSize_cm/2;
|
||||
x2_cm = center.x_cm + gridSize_cm/2; // larger half
|
||||
y2_cm = center.y_cm + gridSize_cm/2;
|
||||
}
|
||||
|
||||
/** equal? */
|
||||
bool operator == (const GridNodeBBox& o) const {
|
||||
return (x1_cm == o.x1_cm) && (y1_cm == o.y1_cm) && (x2_cm == o.x2_cm) && (y2_cm == o.y2_cm);
|
||||
}
|
||||
|
||||
/** does the BBox intersect with the given line? */
|
||||
bool intersects (const Line2D& l) const {
|
||||
Line2D l1(x1_cm, y1_cm, x2_cm, y1_cm); // upper
|
||||
Line2D l2(x1_cm, y2_cm, x2_cm, y2_cm); // lower
|
||||
Line2D l3(x1_cm, y1_cm, x1_cm, y2_cm); // left
|
||||
Line2D l4(x2_cm, y1_cm, x2_cm, y2_cm); // right
|
||||
return l.getSegmentIntersection(l1) ||
|
||||
l.getSegmentIntersection(l2) ||
|
||||
l.getSegmentIntersection(l3) ||
|
||||
l.getSegmentIntersection(l4);
|
||||
p1.x = center.x_cm - gridSize_cm/2; // smaller half
|
||||
p1.y = center.y_cm - gridSize_cm/2;
|
||||
p2.x = center.x_cm + gridSize_cm/2; // larger half
|
||||
p2.y = center.y_cm + gridSize_cm/2;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
@@ -6,13 +6,13 @@
|
||||
struct GridPoint {
|
||||
|
||||
/** x-position (in centimeter) */
|
||||
const float x_cm;
|
||||
float x_cm;
|
||||
|
||||
/** y-position (in centimeter) */
|
||||
const float y_cm;
|
||||
float y_cm;
|
||||
|
||||
/** z-position (in centimeter) */
|
||||
const float z_cm;
|
||||
float z_cm;
|
||||
|
||||
|
||||
/** empty ctor */
|
||||
|
||||
@@ -3,6 +3,8 @@
|
||||
|
||||
#include <string>
|
||||
#include "../../floorplan/Floor.h"
|
||||
#include "../../floorplan/Stairs.h"
|
||||
|
||||
#include "../../geo/Units.h"
|
||||
#include "../GridNodeBBox.h"
|
||||
#include "../Grid.h"
|
||||
@@ -22,6 +24,8 @@ public:
|
||||
/** add the given floor at the provided height (in cm) */
|
||||
void addFloor(const Floor& floor, const float z_cm) {
|
||||
|
||||
|
||||
// build grid-points
|
||||
for(int x_cm = 0; x_cm < floor.getWidth_cm(); x_cm += gridSize_cm) {
|
||||
for (int y_cm = 0; y_cm < floor.getDepth_cm(); y_cm += gridSize_cm) {
|
||||
|
||||
@@ -35,7 +39,181 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
int i = 0;
|
||||
connectAdjacent(z_cm);
|
||||
|
||||
}
|
||||
|
||||
void connectAdjacent(const float z_cm) {
|
||||
|
||||
// connect adjacent grid-points
|
||||
for (int idx = 0; idx < grid.getNumNodes(); ++idx) {
|
||||
|
||||
T& n1 = (T&) grid[idx];
|
||||
if (n1.z_cm != z_cm) {continue;} // ugly... different floor -> skip
|
||||
|
||||
// square around each point
|
||||
for (int x = -gridSize_cm; x <= gridSize_cm; x += gridSize_cm) {
|
||||
for (int y = -gridSize_cm; y <= gridSize_cm; y += gridSize_cm) {
|
||||
|
||||
// skip the center (node itself)
|
||||
if ((x == y) && (x == 0)) {continue;}
|
||||
|
||||
// position of the potential neighbor
|
||||
int ox = n1.x_cm + x;
|
||||
int oy = n1.y_cm + y;
|
||||
GridPoint p(ox, oy, n1.z_cm);
|
||||
|
||||
// does the grid contain the potential neighbor?
|
||||
if (grid.hasNodeFor(p)) {
|
||||
T& n2 = (T&) grid.getNodeFor(p);
|
||||
grid.connectUniDir(n1, n2);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void addStairs(const Stairs& stairs, const float z1_cm, const float z2_cm) {
|
||||
|
||||
for (const Stair& s : stairs) {
|
||||
|
||||
for (int i = 0; i < grid.getNumNodes(); ++i) {
|
||||
|
||||
// potential starting-point for the stair
|
||||
T& n = (T&) grid[i];
|
||||
|
||||
// real starting point for the stair?
|
||||
if (s.from.contains( Point2(n.x_cm, n.y_cm) )) {
|
||||
|
||||
// construct end-point by using the stair's direction
|
||||
const Point3 end = Point3(n.x_cm, n.y_cm, n.z_cm) + Point3(s.dir.x, s.dir.y, (z2_cm-z1_cm));
|
||||
GridPoint gp(end.x, end.y, end.z);
|
||||
|
||||
// does such and end-point exist within the grap? -> construct stair
|
||||
if (grid.hasNodeFor(gp)) {
|
||||
T& n2 = (T&) grid.getNodeFor(gp);
|
||||
|
||||
buildStair(n, n2);
|
||||
|
||||
}
|
||||
int i = 0;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/** build a stair (z-transition) from n1 to n2 */
|
||||
void buildStair(T& n1, T& n2) {
|
||||
|
||||
//TODO: ensure n1 is below n2
|
||||
const float zDiff = n2.z_cm - n1.z_cm;
|
||||
const float xDiff = n2.x_cm - n1.x_cm;
|
||||
const float yDiff = n2.y_cm - n1.y_cm;
|
||||
|
||||
int idx1 = n1.getIdx();
|
||||
int idx2 = -1;
|
||||
const int idx3 = n2.getIdx();
|
||||
|
||||
// move upards in gridSize steps
|
||||
for (int z = gridSize_cm; z < zDiff; z+= gridSize_cm) {
|
||||
|
||||
// calculate the percentage of reached upwards-distance
|
||||
const float percent = z/zDiff;
|
||||
|
||||
// adjust (x,y) accordingly (interpolate)
|
||||
int x = n1.x_cm + xDiff * percent;
|
||||
int y = n1.y_cm + yDiff * percent;
|
||||
|
||||
// snap (x,y) to the grid???
|
||||
//x = std::round(x / gridSize_cm) * gridSize_cm;
|
||||
//y = std::round(y / gridSize_cm) * gridSize_cm;
|
||||
|
||||
// create a new node add it to the grid, and connect it with the previous one
|
||||
idx2 = grid.addUnaligned(T(x,y,z));
|
||||
grid.connectBiDir(idx1, idx2);
|
||||
idx1 = idx2;
|
||||
|
||||
}
|
||||
|
||||
// add the last segment
|
||||
if (idx2 != -1) {
|
||||
grid.connectBiDir(idx2, idx3);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/** add the inverted version of the given z-layer */
|
||||
void addInverted(const Grid<gridSize_cm, T>& gIn, const float z_cm) {
|
||||
|
||||
// get the original grid's bbox
|
||||
BBox3 bb = gIn.getBBox();
|
||||
|
||||
// build new grid-points
|
||||
for(int x_cm = bb.getMin().x; x_cm <= bb.getMax().x; x_cm += gridSize_cm) {
|
||||
for (int y_cm = bb.getMin().y; y_cm < bb.getMax().y; y_cm += gridSize_cm) {
|
||||
|
||||
// does the input-grid contain such a point?
|
||||
GridPoint gp(x_cm, y_cm, z_cm);
|
||||
if (gIn.hasNodeFor(gp)) {continue;}
|
||||
|
||||
// add to the grid
|
||||
grid.add(T(x_cm, y_cm, z_cm));
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// TODO: how to determine the starting index?!
|
||||
|
||||
// IDEAS: find all segments:
|
||||
// start at a random point, add all connected points to the set
|
||||
// start at a NEW random point ( not part of the already processed points), add connected points to a new set
|
||||
// repeat until all points processed
|
||||
// how to handle multiple floor layers?!?!
|
||||
// run after all floors AND staircases were added??
|
||||
// OR: random start, check segment size, < 50% of all nodes? start again
|
||||
|
||||
void removeIsolated() {
|
||||
|
||||
// get largest connected region
|
||||
std::set<int> set;
|
||||
do {
|
||||
const int idxStart = rand() % grid.getNumNodes();
|
||||
set.clear();
|
||||
getConnected(idxStart, set);
|
||||
} while (set.size() < 0.5 * grid.getNumNodes());
|
||||
|
||||
|
||||
// remove all other
|
||||
for (int i = 0; i < grid.getNumNodes(); ++i) {
|
||||
if (set.find(i) == set.end()) {grid.remove(i);}
|
||||
}
|
||||
|
||||
// clean the grid
|
||||
grid.cleanup();
|
||||
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
/** recursively get all connected nodes and add them to the set */
|
||||
void getConnected(const int idx, std::set<int>& set) {
|
||||
|
||||
T& n1 = (T&) grid[idx];
|
||||
set.insert(n1.getIdx());
|
||||
|
||||
for (T& n2 : grid.neighbors(n1)) {
|
||||
if (set.find(n2.getIdx()) == set.end()) {
|
||||
getConnected(n2.getIdx(), set);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@@ -43,7 +221,7 @@ private:
|
||||
|
||||
/** does the bbox intersect with any of the floor's walls? */
|
||||
bool intersects(const GridNodeBBox& bbox, const Floor& floor) {
|
||||
for (const Line2D l : floor.getObstacles()) {
|
||||
for (const Line2& l : floor.getObstacles()) {
|
||||
if (bbox.intersects(l)) {return true;}
|
||||
}
|
||||
return false;
|
||||
|
||||
84
grid/factory/GridImportance.h
Normal file
84
grid/factory/GridImportance.h
Normal file
@@ -0,0 +1,84 @@
|
||||
#ifndef GRIDIMPORTANCE_H
|
||||
#define GRIDIMPORTANCE_H
|
||||
|
||||
#include "../Grid.h"
|
||||
#include "GridFactory.h"
|
||||
#include "../../misc/KNN.h"
|
||||
|
||||
#include <KLib/math/distribution/Normal.h>
|
||||
|
||||
class GridImportance {
|
||||
|
||||
public:
|
||||
|
||||
/** attach importance-factors to the grid */
|
||||
template <int gridSize_cm, typename T> void addImportance(Grid<gridSize_cm, T>& g, const float z_cm) {
|
||||
|
||||
// get an inverted version of the grid
|
||||
Grid<gridSize_cm, T> inv;
|
||||
GridFactory<gridSize_cm, T> fac(inv);
|
||||
fac.addInverted(g, z_cm);
|
||||
|
||||
// construct KNN search
|
||||
KNN<float, Grid<gridSize_cm, T>, T, 3> knn(inv);
|
||||
|
||||
for (int idx = 0; idx < g.getNumNodes(); ++idx) {
|
||||
|
||||
// process each point
|
||||
T& n1 = (T&) g[idx];
|
||||
|
||||
// // get its nearest neighbor
|
||||
// size_t idxNear;
|
||||
// float distSquared;
|
||||
// float point[3] = {n1.x_cm, n1.y_cm, n1.z_cm};
|
||||
// knn.getNearest(point, idxNear, distSquared);
|
||||
|
||||
// // calculate importante
|
||||
// const float imp = importance( Units::cmToM(std::sqrt(distSquared)) );
|
||||
// n1.imp = imp;
|
||||
|
||||
size_t indices[10];
|
||||
float squaredDist[10];
|
||||
float point[3] = {n1.x_cm, n1.y_cm, n1.z_cm};
|
||||
knn.get(point, 10, indices, squaredDist);
|
||||
|
||||
const float imp1 = importance( Units::cmToM(std::sqrt(squaredDist[0])) );
|
||||
const float imp2 = door( indices );
|
||||
n1.imp = (imp1 + imp2)/2;
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
float door( size_t* indices ) {
|
||||
|
||||
// build covariance
|
||||
|
||||
//if (dist1_m > 1.0) {return 1;}
|
||||
//return 1.0 - std::abs(dist1_m - dist2_m);
|
||||
return 1;
|
||||
}
|
||||
|
||||
float importance(float dist_m) {
|
||||
|
||||
static K::NormalDistribution d1(0.0, 0.5);
|
||||
//if (dist_m > 1.5) {dist_m = 1.5;}
|
||||
return 1.0 - d1.getProbability(dist_m) * 0.5;
|
||||
|
||||
// static K::NormalDistribution d1(1.0, 0.75);
|
||||
// //static K::NormalDistribution d2(3.0, 0.75);
|
||||
|
||||
// if (dist_m > 3.0) {dist_m = 3.0;}
|
||||
// return 0.8 + d1.getProbability(dist_m);// + d2.getProbability(dist_m);
|
||||
|
||||
// if (dist_m < 0.5) {return 0.8;}
|
||||
// if (dist_m < 1.5) {return 1.2;}
|
||||
// if (dist_m < 2.5) {return 0.8;}
|
||||
// else {return 1.2;}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
#endif // GRIDIMPORTANCE_H
|
||||
Reference in New Issue
Block a user