refactored FIR filters

- real and complex variant
adjusted StepDetection2
This commit is contained in:
k-a-z-u
2018-07-03 10:56:30 +02:00
parent ae3b95cb0e
commit 039f9c4cee
6 changed files with 285 additions and 9 deletions

View File

@@ -0,0 +1,31 @@
#ifndef FIRFACTORY_H
#define FIRFACTORY_H
#include <vector>
#include <complex>
class FIRFactory {
float sRate_hz;
public:
/** ctor */
FIRFactory(float sRate_hz) : sRate_hz(sRate_hz) {
;
}
// static std::vector<float> getRealBandbass(float center_hz, float width_hz, float sRate_hz, int size) {
// }
// static std::vector<std::complex<float>> getComplexBandbass(float center_hz, float width_hz, float sRate_hz, int size) {
// }
}
#endif // FIRFACTORY_H

104
math/dsp/fir/Real.h Normal file
View File

@@ -0,0 +1,104 @@
#ifndef FIRREAL_H
#define FIRREAL_H
#include <vector>
#include <cmath>
#include <string>
#include "../../../Assertions.h"
namespace FIR {
namespace Real {
using Kernel = std::vector<float>;
using DataVec = std::vector<float>;
class Filter {
Kernel kernel;
DataVec data;
public:
/** ctor */
Filter(const Kernel& kernel) : kernel(kernel) {
;
}
/** empty ctor */
Filter() : kernel() {
;
}
/** set the filter-kernel */
void setKernel(const Kernel& kernel) {
this->kernel = kernel;
}
/** filter the given incoming real data */
DataVec append(const DataVec& newData) {
// append to local buffer (as we need some history)
data.insert(data.end(), newData.begin(), newData.end());
return processLocalBuffer();
}
/** filter the given incoming real value */
float append(const float val) {
data.push_back(val);
auto tmp = processLocalBuffer();
if (tmp.size() == 0) {return NAN;}
if (tmp.size() == 1) {return tmp[0];}
throw Exception("FIR::Real::Filter detected invalid result");
}
private:
DataVec processLocalBuffer() {
// sanity check
Assert::isNot0(kernel.size(), "FIRComplex:: kernel not yet configured!");
// number of processable elements (due to filter size)
const int processable = data.size() - kernel.size() + 1 - kernel.size()/2;
// nothing to-do?
if (processable <= 0) {return DataVec();}
// result-vector
DataVec res;
res.resize(processable);
// fire
convolve(data.data(), res.data(), processable);
// drop processed elements from the local buffer
data.erase(data.begin(), data.begin() + processable);
// done
return res;
}
template <typename T> void convolve(const float* src, T* dst, const size_t cnt) {
const size_t ks = kernel.size();
for (size_t i = 0; i < cnt; ++i) {
T t = T();
for (size_t j = 0; j < ks; ++j) {
t += src[j+i] * kernel[j];
}
if (t != t) {throw std::runtime_error("detected NaN");}
dst[i] = t;
}
}
};
}
}
#endif // FIRREAL_H

133
math/dsp/fir/RealFactory.h Normal file
View File

@@ -0,0 +1,133 @@
#ifndef FIRREALFACTORY_H
#define FIRREALFACTORY_H
#include "Real.h"
namespace FIR {
namespace Real {
class Factory {
Kernel kernel;
float sRate_hz;
public:
/** ctor */
Factory(float sRate_hz) : sRate_hz(sRate_hz) {
;
}
/** frequency shift the kernel by multiplying with a frequency */
void shift(const float shift_hz) {
for (size_t i = 0; i < kernel.size(); ++i) {
const float t = (float) i / (float) sRate_hz;
const float real = std::sin(t * 2 * M_PI * shift_hz);
kernel[i] = kernel[i] * real;
}
}
/** create a lowpass filte kernel */
void lowpass(const float cutOff_hz, const int n = 50) {
kernel.clear();
for (int i = -n; i <= +n; ++i) {
const double t = (double) i / (double) sRate_hz;
const double tmp = 2 * M_PI * cutOff_hz * t;
const double val = (tmp == 0) ? (1) : (std::sin(tmp) / tmp);
const double res = val;// * 0.5f; // why 0.5?
if (res != res) {throw std::runtime_error("detected NaN");}
kernel.push_back(res);
}
}
/** apply hamming window to the filter */
void applyWindowHamming() {
const int n = (kernel.size()-1)/2;
int i = -n;
for (float& f : kernel) {
f *= winHamming(i+n, n*2);
++i;
}
}
// https://dsp.stackexchange.com/questions/4693/fir-filter-gain
/** normalize using the DC-part of the kernel */
void normalizeDC() {
float sum = 0;
for (auto f : kernel) {sum += f;}
for (auto& f : kernel) {f /= sum;}
}
// https://dsp.stackexchange.com/questions/4693/fir-filter-gain
void normalizeAC(const float freq_hz) {
const int n = (kernel.size()-1)/2;
int i = -n;
float sum = 0;
for (float f : kernel) {
const double t = (double) i / (double) sRate_hz;
const double r = 2 * M_PI * freq_hz * t;
const double s = std::sin(r);
sum += f * s;
++i;
}
for (auto& f : kernel) {f /= sum;}
}
Kernel getLowpass(const float cutOff_hz, const int n) {
lowpass(cutOff_hz, n);
applyWindowHamming();
normalizeDC();
return kernel;
}
Kernel getBandpass(const float width_hz, const float center_hz, const int n) {
lowpass(width_hz/2, n);
applyWindowHamming();
//normalizeDC();
shift(center_hz);
normalizeAC(center_hz);
return kernel;
}
void dumpKernel(const std::string& file, const std::string& varName) {
std::ofstream out(file);
out << "# name: " << varName << "\n";
out << "# type: matrix\n";
out << "# rows: " << kernel.size() << "\n";
out << "# columns: 1\n";
for (const float f : kernel) {
out << f << "\n";
}
out.close();
}
private:
/** get a value from the hamming window */
static double winHamming(const double t, const double size) {
return 0.54 - 0.46 * std::cos(2 * M_PI * t / size);
}
};
}
}
#endif // FIRREALFACTORY_H