Small fixes + graphics
This commit is contained in:
@@ -28,7 +28,7 @@ Many unknown quantities, like the walls definitive material or thickness, make i
|
||||
Additionally, \del{most wireless} \add{many of these} approaches are based on a line-of-sight assumption.
|
||||
Thus, the performance will be even more limited due to the irregularly shaped spatial structure of such buildings.
|
||||
Our approach tries to avoid those problems using an optimization scheme for Wi-Fi based on a \del{few} \add{set of} reference measurements.
|
||||
We distribute a \del{small number} \add{set} of \del{simple} \add{small (\SI{2.8}{\centi\meter} x \SI{3.5}{\centi\meter})} and cheap \add{($\sim \SI{10}{\$}$)} \docWIFI{} beacons over the whole building \add{to ensure a reasonable coverage} and instead of measuring their position \add{and necessary parameters, we use our optimization scheme, initially presented in \cite{Ebner-17}}.
|
||||
We distribute a \del{small number} \add{set} of \del{simple} \add{small (\SI{2.8}{\centi\meter} x \SI{3.5}{\centi\meter})} and cheap \add{($\approx \SI{10}{\$}$)} \docWIFI{} beacons over the whole building \add{to ensure a reasonable coverage} and instead of measuring their position \add{and necessary parameters, we use our optimization scheme, initially presented in \cite{Ebner-17}}.
|
||||
|
||||
\add{An optimization scheme is able to compensate for wrongly measured access point positions, inaccurate building plans or other knowledge necessary for the Wi-Fi component.
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user