schreibe schreibe eval schreibe
This commit is contained in:
@@ -26,6 +26,8 @@
|
||||
\usepackage{eqparbox}
|
||||
\usepackage{epstopdf}
|
||||
\usepackage{siunitx}
|
||||
\usepackage{array}
|
||||
\usepackage{multirow}
|
||||
|
||||
%\updates{yes} % If there is an update available, un-comment this line
|
||||
|
||||
|
||||
@@ -13,6 +13,8 @@ For the sake of simplicity we did not incorporate such knowledge into the floorp
|
||||
Thus, the floorplan consists only of walls, ceilings, doors, windows and stairs.
|
||||
It was created using our 3D map editor software based on architectural drawings from the 1980s.
|
||||
|
||||
Sensor measurements are recorded using a simple mobile application that implements the standard Android sensor functionalities.
|
||||
As smartphones we used either a Samsung Note 2, Google Pixel One or Motorola Nexus 6.
|
||||
The computation of the state estimation as well as the \docWifi{} optimization are done offline using an Intel Core i7-4702HQ CPU with a frequency of \SI{2.2}{GHz} running \SI{8}{cores} and \SI{16}{GB} main memory.
|
||||
However, similar to our previous, award-winning system, the setup is able to run completely on commercial smartphones as well as it uses C++ code \cite{torres2017smartphone}.
|
||||
%Sensor measurements are recorded using a simple mobile application that implements the standard Android SensorManager.
|
||||
@@ -25,7 +27,7 @@ We try to resolve sample impoverishment with the here presented method and compa
|
||||
|
||||
|
||||
\subsection{Transition}
|
||||
To make a statement about the performance of our novel transition model presented within section \ref {}, we
|
||||
To make a statement about the performance of our novel transition model presented within section \ref {}, we chose a simple scenario, in which a tester walks up and down a staircase three times.
|
||||
|
||||
\todo{Unser liebes Treppensteigen. Vergleich altes und neues Bewegungsmodell.}
|
||||
|
||||
@@ -57,16 +59,16 @@ Other transmitters like smart TVs or smartphone hotspots are ignored as they mig
|
||||
|
||||
\subsection{Location Estimation Error}
|
||||
|
||||
|
||||
\begin{figure}[ht]
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{gfx/floorplanDummy.png}
|
||||
\includegraphics[width=0.9\textwidth]{gfx/floorplanDummy.png}
|
||||
\caption{Floorplan Dummy}
|
||||
\label{fig:floorplan}
|
||||
\end{figure}
|
||||
%
|
||||
The 4 arranged walks can be seen in fig. \ref{fig:floorplan}.
|
||||
The 4 chosen walking paths can be seen in fig. \ref{fig:floorplan}.
|
||||
They were carried out be 4 different male testers using either a Samsung Note 2, Google Pixel One or Motorola Nexus 6 for recording the measurements.
|
||||
\todo{walks noch weng erläutern, länge und dauer, many different other walks were made, however those 4 where chosen because most challenging etc. pp.}
|
||||
All in all, we recorded \SI{28}{} distinct measurement series, \SI{7}{} for each walk.
|
||||
A walk is indicated by a set of numbered markers, fixed to the ground.
|
||||
Small icons on those markers give the direction of the next marker and in some cases provide instructions to pause walking for a certain time.
|
||||
@@ -78,32 +80,119 @@ Thus, the ground truth might not be \SI{100}{\percent} accurate, but fair enough
|
||||
The approximation error is then calculated by comparing the interpolated ground truth position with the current estimation \cite{Fetzer-16}.
|
||||
|
||||
%computation und monte carlo runs
|
||||
For each walk we deployed 50 runs using a varying size of particles.
|
||||
For each walk we deployed 100 runs using \SI{5000}{particles} particles.
|
||||
Instead of an initial position and heading, all walks start with a uniform distribution (random position and heading) as prior.
|
||||
The overall localisation results can be see in table \ref{table:overall}.
|
||||
Here, we differ between the single impoverishment techniques.
|
||||
For a better overview, we only used the KDE-based estimation, as the errors compared to the weighted average estimation differ by only a few centimetres.
|
||||
|
||||
a simple filter (weighted average estimation + simple impoverishment solution) and an advanced filter (KDE estimation + $D_\text{KL}$-based impoverishment solution).
|
||||
It can be seen that...
|
||||
|
||||
the results include also all failed walks, to show the benefits of using an anti impoverishment method. in walk 0 at walk 1 20 percent of walks failed ...
|
||||
of course it would be possible to resets the system at this point, but thats not our anspruch...
|
||||
we want to show a real worst case scenario!
|
||||
|
||||
\todo{providing a penalty for wrong floors. sonst haben wir das problem das der overall error einfach nicht unterschiedlich genug ist. }
|
||||
|
||||
|
||||
|
||||
|
||||
\newcommand{\STAB}[1]{\begin{tabular}{@{}c@{}}#1\end{tabular}}
|
||||
|
||||
\begin{table}[!h]
|
||||
\centering
|
||||
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
|
||||
\hline
|
||||
Method & \multicolumn{3}{c|}{none} & \multicolumn{3}{c|}{simple} & \multicolumn{3}{c|}{kde}\\
|
||||
\hline
|
||||
& $\bar{x}$ & $\bar{\sigma}$ & $\tilde{x}_{75}$ & $\bar{x}$ & $\bar{\sigma}$ & $\tilde{x}_{75}$ & $\bar{x}$ & $\bar{\sigma}$ & $\tilde{x}_{75}$ \\
|
||||
\hline \hline
|
||||
Walk 0 & \SI{1315}{\centi\meter} & \SI{1136}{\centi\meter} & \SI{2266}{\centi\meter} & \SI{1189}{\centi\meter} & \SI{1092}{\centi\meter} & \SI{2019}{\centi\meter} & \SI{301}{\centi\meter} & \SI{252}{\centi\meter} & \SI{376}{\centi\meter} \\ \hline
|
||||
Walk 1 & \SI{318}{\centi\meter} & \SI{243}{\centi\meter} & \SI{402}{\centi\meter} & \SI{318}{\centi\meter} & \SI{240}{\centi\meter} & \SI{403}{\centi\meter} & \SI{342}{\centi\meter} & \SI{256}{\centi\meter} & \SI{440}{\centi\meter} \\ \hline
|
||||
Walk 2 & \SI{589}{\centi\meter} & \SI{403}{\centi\meter} & \SI{843}{\centi\meter} & \SI{321}{\centi\meter} & \SI{210}{\centi\meter} & \SI{431}{\centi\meter} & \SI{342}{\centi\meter} & \SI{219}{\centi\meter} & \SI{455}{\centi\meter} \\ \hline
|
||||
Walk 3 & \SI{462}{\centi\meter} & \SI{337}{\centi\meter} & \SI{701}{\centi\meter} & \SI{407}{\centi\meter} & \SI{306}{\centi\meter} & \SI{599}{\centi\meter} & \SI{341}{\centi\meter} & \SI{253}{\centi\meter} & \SI{462}{\centi\meter} \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\caption{Overall localization results using the different impoverishment methods. The error is given by the \SI{75}{\percent}-quantil Used only kde for estimation, since kde and avg nehmen sich nicht viel. fehler kleiner als 10 cm im durchschnitt deshalb der übersichtshalber weggelassen. }
|
||||
\label{table:overall}
|
||||
\end{table}
|
||||
|
||||
|
||||
%vielleicht die avg / kde unterscheidung weg lassen? dafür avg, std und 75%
|
||||
|
||||
It is clearly visible that bla outperformce blah at path 4.
|
||||
Exemplary estimation results for walk 4 can be seen in fig. \ref{}.
|
||||
|
||||
The 75 quantil gibt aufschluss, über aufgretenedes impoverishment. due the 100 runs, some of the walks, where impoverishment occured are average out.
|
||||
|
||||
neff = 0.85
|
||||
|
||||
boxkde 0.2 point2(1,1)
|
||||
|
||||
wifi useregionalopt=true
|
||||
|
||||
|
||||
BILD: Von einem Pfad der steckenbleibt und den beiden anderen verfahren mit fehler über die zeit.
|
||||
|
||||
BILD: WIFI-Fehler unten bei den Kellern.
|
||||
|
||||
BILD: Estimation Fehler
|
||||
|
||||
|
||||
%To analyse the drawbacks and benefits of the here presented method to resolve sample impoverishment,
|
||||
|
||||
%The benefits of the here presented solution to resolve sample impoverishment can be seen in the example shown in fig. \ref{}.
|
||||
|
||||
|
||||
|
||||
%probleme mit impoverishment aufzeigen, wo bringt es was, was macht es kaputt etc pp
|
||||
|
||||
%%estimation
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\input{gfx/walk.tex}
|
||||
\caption{Occurring bimodal distribution caused by uncertain measurements in the first \SI{13.4}{\second} of the walk. After \SI{20.8}{\second}, the distribution gets unimodal. The weigted-average estimation (blue) provides a high error compared to the ground truth (solid black), while the BoxKDE approach (orange) does not. }
|
||||
\label{fig:realWorldMulti}
|
||||
\end{figure}
|
||||
|
||||
As discussed in chapter \ref{}, the main advantage of a KDE-based estimation is that it provides the "correct" mode of a density, even under a multimodal setting.
|
||||
A situation in which the system highly benefits from this is illustrated in fig. \ref{fig:realWorldMulti}.
|
||||
Here, a set of particles splits apart, due to uncertain measurements and multiple possible walking directions.
|
||||
Indicated by the black dotted line, the resulting bimodal posterior reaches its maximum distance between the modes at \SI{13.4}{\second}.
|
||||
Thus, a weighted average estimation (blue line) results in a position of the pedestrian somewhere outside the building (light green area).
|
||||
The ground truth is given by the black solid line.
|
||||
The KDE-based estimation (orange line) is able to provide reasonable results by choosing the "correct" mode of the density.
|
||||
After \SI{20.8}{\second} the setting returns to be unimodal again.
|
||||
Due to a right turn the lower red particles are walking against a wall and thus punished with a low weight.
|
||||
|
||||
Although, situations as displayed in fig. \ref{fig:realWorldMulti} frequently occur, the KDE-estimation is not able to improve the overall estimation results.
|
||||
This can be seen in the corresponding error development over time plot given by fig. \ref{fig:realWorldTime}.
|
||||
Here, the KDE-estimation performs slightly better then the weighted-average, however after deploying \SI{100}{} Monte Carlo runs, the difference becomes insignificant.
|
||||
It is obvious, that the above mentioned "correct" mode, not always provides the lowest error.
|
||||
In some situations the weighted-average estimation is often closer to the ground truth.
|
||||
Within our experiments this happened especially when entering or leaving thick-walled rooms, causing slow and attenuated Wi-Fi signals.
|
||||
While the system’s dynamics are moving the particles outside, the faulty Wi-Fi readings are holding back a majority by assigning corresponding weights.
|
||||
Only with new measurements coming from the hallway or other parts of the building, the distribution and thus the KDE-estimation are able to recover.
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\input{gfx/errorOverTime.tex}
|
||||
\caption{Error development over time of a single Monte Carlo run of the walk calculated between estimation and ground truth. Between \SI{230}{\second} and \SI{290}{\second} to pedestrian was not moving.}
|
||||
\label{fig:realWorldTime}
|
||||
\end{figure}
|
||||
|
||||
As already mentioned in our previous work \cite{}.
|
||||
A KDE-based approach for estimation is able to resolve multimodalities.
|
||||
It does not always provide the lowest error, since it depends more on an accurate sensor model then a weighted-average approach, but is very suitable as a good indicator about the real performance of a sensor fusion system.
|
||||
At the end, in the here shown examples we only searched for a global maxima, even though this approach approach opens a wide range of other possibilities for finding a best estimate.
|
||||
|
||||
%wie in bulli paper.
|
||||
|
||||
%letzer absatz nochmal gesamtergebniss des gesamten systems
|
||||
%was läuft noch schief? wo macht was probleme?
|
||||
|
||||
|
||||
\begin{itemize}
|
||||
\item Noch ein paar Dinge über das gebäude und das setup an sich
|
||||
\item auf was wurde geachtet, wie wurden die ap's gesetzt. etc pp.
|
||||
\item wie wurde ground truth gemacht
|
||||
\item wie viele testaufnahmen...
|
||||
\item die einzelnen pfade gegenüberstellen. (videos irgendwie bereitstellen?)
|
||||
\item schätzung der ap positionen vs reale ap positionen
|
||||
\item fehler gegenüberstellen, genauigkeiten.
|
||||
\item allgemein an den parametern rumspielen: Anzahl Partikel (da wir das eig noch nicht so wirklich oft gemacht haben)
|
||||
\item estimation methoden gegenüberstellen (diskussion aus bulli paper)
|
||||
\item aktive probleme aufzeigen (verlaufen, hängenblieben, schlechte ap signale ...
|
||||
\end{itemize}
|
||||
|
||||
wir experimentieren auf allen vieren.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user