diff --git a/tex_review/bare_conf.tex b/tex_review/bare_conf.tex index d58a4b7..89f97f1 100644 --- a/tex_review/bare_conf.tex +++ b/tex_review/bare_conf.tex @@ -26,6 +26,7 @@ \usepackage{siunitx} \usepackage{array} \usepackage{multirow} +\usepackage{booktabs} %added for comments to reviewers \usepackage[draft]{todonotes} %the orange todos diff --git a/tex_review/chapters/experiments.tex b/tex_review/chapters/experiments.tex index 189efb7..8e5b37d 100644 --- a/tex_review/chapters/experiments.tex +++ b/tex_review/chapters/experiments.tex @@ -216,26 +216,23 @@ In contrast, the $D_\text{KL}$-based method extends the transition and thus uses We set $l_\text{max} =$ \SI{-75}{dBm} and $l_\text{min} =$ \SI{-90}{dBm}. For a better overview, we only used the KDE-based estimation, as the errors compared to the weighted-average estimation differ by only a few centimeter. -\newcommand{\STAB}[1]{\begin{tabular}{@{}c@{}}#1\end{tabular}} - \begin{table}[t] \centering - \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|} - \hline - Method & \multicolumn{3}{c|}{none} & \multicolumn{3}{c|}{simple} & \multicolumn{3}{c|}{$D_\text{KL}$}\\ - \hline - & $\bar{x}$ & $\bar{\sigma}$ & $\tilde{x}_{75}$ & $\bar{x}$ & $\bar{\sigma}$ & $\tilde{x}_{75}$ & $\bar{x}$ & $\bar{\sigma}$ & $\tilde{x}_{75}$ \\ - \hline \hline - walk 0 & \SI{13.4}{\meter} & \SI{11.2}{\meter} & \SI{22.6}{\meter} & \SI{7.1}{\meter} & \SI{6.6}{\meter} & \SI{9.4}{\meter} & \SI{5.8}{\meter} & \SI{4.9}{\meter} & \SI{7.3}{\meter} \\ \hline - walk 1 & \SI{3.2}{\meter} & \SI{2.4}{\meter} & \SI{4.1}{\meter} & \SI{3.2}{\meter} & \SI{2.6}{\meter} & \SI{4.0}{\meter} & \SI{3.8}{\meter} & \SI{3.2}{\meter} & \SI{4.6}{\meter} \\ \hline - walk 2 & \SI{8.3}{\meter} & \SI{4.1}{\meter} & \SI{10.9}{\meter} & \SI{3.6}{\meter} & \SI{2.3}{\meter} & \SI{4.9}{\meter} & \SI{3.6}{\meter} & \SI{2.3}{\meter} & \SI{4.8}{\meter} \\ \hline - walk 3 & \SI{7.0}{\meter} & \SI{5.9}{\meter} & \SI{13.5}{\meter} & \SI{5.4}{\meter} & \SI{4.7}{\meter} & \SI{7.7}{\meter} & \SI{4.8}{\meter} & \SI{4.3}{\meter} & \SI{6.5}{\meter} \\ - \hline + \begin{tabular}{rrrrcrrrcrrr} + \toprule + & \multicolumn{3}{c}{none} & \phantom{abc} & \multicolumn{3}{c}{simple} & \phantom{abc} & \multicolumn{3}{c}{$D_\text{KL}$} \\ + \cmidrule{2-4} \cmidrule{6-8} \cmidrule{10-12} + & \multicolumn{1}{c}{$\bar{x}$} & \multicolumn{1}{c}{$\bar{\sigma}$} & \multicolumn{1}{c}{$\tilde{x}_{75}$} && \multicolumn{1}{c}{$\bar{x}$} & \multicolumn{1}{c}{$\bar{\sigma}$} & \multicolumn{1}{c}{$\tilde{x}_{75}$} && \multicolumn{1}{c}{$\bar{x}$} & \multicolumn{1}{c}{$\bar{\sigma}$} & \multicolumn{1}{c}{$\tilde{x}_{75}$} \\ + \midrule + walk 0 & \SI{13.4}{\meter} & \SI{11.2}{\meter} & \SI{22.6}{\meter} && \SI{7.1}{\meter} & \SI{6.6}{\meter} & \SI{9.4}{\meter} && \SI{5.8}{\meter} & \SI{4.9}{\meter} & \SI{7.3}{\meter} \\ + walk 1 & \SI{3.2}{\meter} & \SI{2.4}{\meter} & \SI{4.1}{\meter} && \SI{3.2}{\meter} & \SI{2.6}{\meter} & \SI{4.0}{\meter} && \SI{3.8}{\meter} & \SI{3.2}{\meter} & \SI{4.6}{\meter} \\ + walk 2 & \SI{8.3}{\meter} & \SI{4.1}{\meter} & \SI{10.9}{\meter} && \SI{3.6}{\meter} & \SI{2.3}{\meter} & \SI{4.9}{\meter} && \SI{3.6}{\meter} & \SI{2.3}{\meter} & \SI{4.8}{\meter} \\ + walk 3 & \SI{7.0}{\meter} & \SI{5.9}{\meter} & \SI{13.5}{\meter} && \SI{5.4}{\meter} & \SI{4.7}{\meter} & \SI{7.7}{\meter} && \SI{4.8}{\meter} & \SI{4.3}{\meter} & \SI{6.5}{\meter} \\ + \bottomrule \end{tabular} \caption{Overall localization results in meter using the different impoverishment methods. For estimation we used the KDE-based method, as the errors compared to the weighted-average differ by only a few centimeter. The results are presented given the average positioning error $\bar{x}$, the standard deviation $\bar{\sigma}$ and the \SI{75}{\percent}-quantil of positioning errors $\tilde{x}_{75}$.} \label{table:overall} \end{table} - All walks, except for walk 1, suffer in some way from sample impoverishment. We discuss the single results of table \ref{table:overall} starting with walk 0. Here, the pedestrians started at the top most level, walking down to the lowest point of the building.