#ifndef FLOGIC_H #define FLOGIC_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Structs.h" #include #include "../Settings.h" #include #include template struct random_selector { //On most platforms, you probably want to use std::random_device("/dev/urandom")() random_selector(RandomGenerator g = RandomGenerator(std::random_device()())) : gen(g) {} template Iter select(Iter start, Iter end) { std::uniform_int_distribution<> dis(0, std::distance(start, end) - 1); std::advance(start, dis(gen)); return start; } //convenience function template Iter operator()(Iter start, Iter end) { return select(start, end); } //convenience function that works on anything with a sensible begin() and end(), and returns with a ref to the value type template auto operator()(const Container& c) -> decltype(*begin(c))& { return *select(begin(c), end(c)); } private: RandomGenerator gen; }; /** particle-filter init randomly distributed within the building*/ struct PFInit : public K::ParticleFilterInitializer { Grid& grid; int mode; PFInit(Grid& grid, int mode) : grid(grid), mode(mode) {;} virtual void initialize(std::vector>& particles) override { for (K::Particle& p : particles) { int idx = rand() % grid.getNumNodes(); p.state.position = grid[idx]; // random position p.state.heading.direction = (rand() % 360) / 180.0 * M_PI; // random heading p.state.heading.error = 0; p.state.relativePressure = 0; // start with a relative pressure of 0 p.weight = 1.0 / particles.size(); // equal weight //for debugging p.state.curMode = mode; } } }; /** particle-filter init with fixed position*/ struct PFInitFixed : public K::ParticleFilterInitializer { Grid& grid; GridPoint startPos; float headingDeg; int mode; PFInitFixed(Grid& grid, GridPoint startPos, float headingDeg, int mode) : grid(grid), startPos(startPos), headingDeg(headingDeg), mode(mode) {;} virtual void initialize(std::vector>& particles) override { Distribution::Normal norm(0.0f, 1.5f); for (K::Particle& p : particles) { GridPoint pos = startPos + GridPoint(norm.draw(),norm.draw(),0.0f); GridPoint startPos = grid.getNodeFor(pos); p.state.position = startPos; // scatter arround the start position p.state.heading.direction = headingDeg / 180.0 * M_PI; // fixed heading p.state.heading.error = 0; p.state.relativePressure = 0; // start with a relative pressure of 0 p.weight = 1.0 / particles.size(); // equal weight //for debugging p.state.curMode = mode; } } }; /** very simple transition model, just scatter normal distributed */ struct PFTransSimple : public K::ParticleFilterTransition{ Grid& grid; // define the noise Distribution::Normal noise_cm = Distribution::Normal(0.0, Settings::IMU::stepLength * 2.0 * 100.0); Distribution::Normal height_m = Distribution::Normal(0.0, 6.0); // draw randomly from a vector random_selector<> rand; // draw from 0 - 1 Distribution::Uniform uniRand = Distribution::Uniform(0,1); /** ctor */ PFTransSimple(Grid& grid) : grid(grid) {} virtual void transition(std::vector>& particles, const MyControl* control) override { int noNewPositionCounter = 0; #pragma omp parallel for num_threads(6) for (int i = 0; i < Settings::numParticles; ++i) { K::Particle& p = particles[i]; // update the baromter float deltaZ_cm = p.state.positionOld.inMeter().z - p.state.position.inMeter().z; p.state.relativePressure += deltaZ_cm * 0.105f; double diffHeight = p.state.position.inMeter().z + height_m.draw(); double newHeight_cm = p.state.position.z_cm; if(diffHeight > 9.1){ newHeight_cm = 10.8 * 100.0; } else if (diffHeight < 9.1 && diffHeight > 5.7){ newHeight_cm = 7.4 * 100.0; } else if (diffHeight < 5.7 && diffHeight > 2.0) { newHeight_cm = 4.0 * 100.0; } else { newHeight_cm = 0.0; } GridPoint noisePt(noise_cm.draw(), noise_cm.draw(), 0.0); GridPoint newPosition = p.state.position + noisePt; newPosition.z_cm = newHeight_cm; // p.state.position = grid.getNearestNode(newPosition); if(grid.hasNodeFor(newPosition)){ p.state.position = newPosition; }else{ //no new position! //#pragma omp atomic //noNewPositionCounter++; } } //std::cout << noNewPositionCounter << std::endl; } }; /** particle-filter transition */ struct PFTrans : public K::ParticleFilterTransition { Grid& grid; GridWalker walker; WalkModuleHeading modHeadUgly; // stupid WalkModuleHeadingControl modHead; WalkModuleHeadingVonMises modHeadMises; WalkModuleNodeImportance modImportance; WalkModuleSpread modSpread; WalkModuleFavorZ modFavorZ; //WalkModulePreventVisited modPreventVisited; //WalkModuleActivityControl modActivity; std::minstd_rand gen; PFTrans(Grid& grid, MyControl* ctrl) : grid(grid), modHead(ctrl, Settings::IMU::turnSigma), modHeadMises(ctrl, Settings::IMU::turnSigma) {//, modPressure(ctrl, 0.100) { walker.addModule(&modHead); //walker.addModule(&modHeadMises); //walker.addModule(&modSpread); // might help in some situations! keep in mind! //walker.addModule(&modActivity); //walker.addModule(&modHeadUgly); //walker.addModule(&modImportance); //walker.addModule(&modFavorZ); //walker.addModule(&modButterAct); //walker.addModule(&modWifi); //walker.addModule(&modPreventVisited); } virtual void transition(std::vector>& particles, const MyControl* control) override { std::normal_distribution noise(0, Settings::IMU::stepSigma); #pragma omp parallel for num_threads(6) for (int i = 0; i < Settings::numParticles; ++i) { K::Particle& p = particles[i]; // save old position p.state.positionOld = p.state.position; //GridPoint(p.state.position.x_cm, p.state.position.y_cm, p.state.position.z_cm); // update steps const float dist_m = std::abs(control->numStepsSinceLastTransition * Settings::IMU::stepLength + noise(gen)); // update the particle in-place p.state = walker.getDestination(grid, p.state, dist_m); // update the baromter float deltaZ_cm = p.state.positionOld.inMeter().z - p.state.position.inMeter().z; p.state.relativePressure += deltaZ_cm * 0.105f; } } }; struct PFEval : public K::ParticleFilterEvaluation { WiFiModelLogDistCeiling& wifiModel; WiFiObserverFree wiFiProbability; // free-calculation //WiFiObserverGrid wiFiProbability; // grid-calculation BeaconModelLogDistCeiling& beaconModel; BeaconObserverFree beaconProbability; Grid& grid; PFEval(WiFiModelLogDistCeiling& wifiModel, BeaconModelLogDistCeiling& beaconModel, Grid& grid) : wifiModel(wifiModel), beaconModel(beaconModel), grid(grid), wiFiProbability(Settings::WiFiModel::sigma, wifiModel), beaconProbability(Settings::BeaconModel::sigma, beaconModel){ } /** probability for WIFI */ inline double getWIFI(const MyObs& observation, const WiFiMeasurements& vapWifi, const GridPoint& point) const { //const MyNode& node = grid.getNodeFor(point); return wiFiProbability.getProbability(point.inMeter() + Point3(0,0,1.3), observation.currentTime, vapWifi); } /** probability for BEACONS */ inline double getBEACON(const MyObs& observation, const GridPoint& point){ //consider adding the persons height Point3 p = point.inMeter() + Point3(0,0,1.3); return beaconProbability.getProbability(p, observation.currentTime, observation.beacons); } /** probability for Barometer */ inline double getBaroPressure(const MyObs& observation, const float hPa) const{ return Distribution::Normal::getProbability(static_cast(hPa), 0.10, static_cast(observation.relativePressure)); } double getStairProb(const K::Particle& p, const ActivityButterPressure::Activity act) { const float kappa = 0.75; const MyNode& gn = grid.getNodeFor(p.state.position); switch (act) { case ActivityButterPressure::Activity::STAY: if (gn.getType() == GridNode::TYPE_FLOOR) {return kappa;} if (gn.getType() == GridNode::TYPE_DOOR) {return kappa;} {return 1-kappa;} case ActivityButterPressure::Activity::UP: case ActivityButterPressure::Activity::DOWN: if (gn.getType() == GridNode::TYPE_STAIR) {return kappa;} if (gn.getType() == GridNode::TYPE_ELEVATOR) {return kappa;} {return 1-kappa;} } return 1.0; } virtual double evaluation(std::vector>& particles, const MyObs& observation) override { double sum = 0; const WiFiMeasurements wifiObs = Settings::WiFiModel::vg_eval.group(observation.wifi); #pragma omp parallel for num_threads(6) for (int i = 0; i < Settings::numParticles; ++i) { K::Particle& p = particles[i]; // Point3 pos_m = p.state.position.inMeter(); // Point3 posOld_m = p.state.positionOld.inMeter(); const double pWifi = getWIFI(observation, wifiObs, p.state.position); //const double pBaroPressure = getStairProb(p, observation.activity); const double pBaroPressure = getBaroPressure(observation, p.state.relativePressure); //const double pBeacon = getBEACON(observation, p.state.position); //small checks _assertNotNAN(pWifi, "Wifi prob is nan"); //_assertNot0(pBaroPressure,"pBaroPressure is null"); const double prob = pWifi * pBaroPressure; p.weight = prob; #pragma omp atomic sum += (prob); } if(sum == 0.0){ return 1.0; } return sum; } }; #endif // FLOGIC_H