refactoring, easy debugging
This commit is contained in:
@@ -7,6 +7,8 @@
|
||||
|
||||
namespace Settings {
|
||||
|
||||
const bool useKLB = true;
|
||||
|
||||
const int numParticles = 10000;
|
||||
|
||||
namespace IMU {
|
||||
|
||||
@@ -14,6 +14,7 @@
|
||||
#include <Indoor/grid/walk/v2/modules/WalkModuleSpread.h>
|
||||
#include <Indoor/grid/walk/v2/modules/WalkModuleFavorZ.h>
|
||||
#include <Indoor/grid/walk/v2/modules/WalkModulePreventVisited.h>
|
||||
#include <Indoor/grid/walk/v2/modules/WalkModuleActivityControl.h>
|
||||
|
||||
#include <Indoor/sensors/radio/model/WiFiModelLogDistCeiling.h>
|
||||
#include <Indoor/sensors/radio/WiFiProbabilityFree.h>
|
||||
@@ -46,6 +47,7 @@ struct PFInit : public K::ParticleFilterInitializer<MyState> {
|
||||
p.state.heading.direction = (rand() % 360) / 180.0 * M_PI; // random heading
|
||||
p.state.heading.error = 0;
|
||||
p.state.relativePressure = 0; // start with a relative pressure of 0
|
||||
p.weight = 1.0 / particles.size(); // equal weight
|
||||
|
||||
}
|
||||
}
|
||||
@@ -75,7 +77,7 @@ struct PFInitFixed : public K::ParticleFilterInitializer<MyState> {
|
||||
p.state.heading.direction = headingDeg / 180.0 * M_PI; // fixed heading
|
||||
p.state.heading.error = 0;
|
||||
p.state.relativePressure = 0; // start with a relative pressure of 0
|
||||
|
||||
p.weight = 1.0 / particles.size(); // equal weight
|
||||
}
|
||||
}
|
||||
|
||||
@@ -96,6 +98,8 @@ struct PFTrans : public K::ParticleFilterTransition<MyState, MyControl> {
|
||||
WalkModuleFavorZ<MyNode, MyState> modFavorZ;
|
||||
//WalkModulePreventVisited<MyNode, MyState> modPreventVisited;
|
||||
|
||||
//WalkModuleActivityControl<MyNode, MyState, MyControl> modActivity;
|
||||
|
||||
std::minstd_rand gen;
|
||||
|
||||
|
||||
@@ -104,7 +108,7 @@ struct PFTrans : public K::ParticleFilterTransition<MyState, MyControl> {
|
||||
walker.addModule(&modHead);
|
||||
//walker.addModule(&modHeadMises);
|
||||
//walker.addModule(&modSpread); // might help in some situations! keep in mind!
|
||||
|
||||
//walker.addModule(&modActivity);
|
||||
//walker.addModule(&modHeadUgly);
|
||||
//walker.addModule(&modImportance);
|
||||
//walker.addModule(&modFavorZ);
|
||||
@@ -178,18 +182,45 @@ struct PFEval : public K::ParticleFilterEvaluation<MyState, MyObs> {
|
||||
return Distribution::Normal<double>::getProbability(static_cast<double>(hPa), 0.10, static_cast<double>(observation.relativePressure));
|
||||
}
|
||||
|
||||
double getStairProb(const K::Particle<MyState>& p, const ActivityButterPressure::Activity act) {
|
||||
|
||||
const float kappa = 0.75;
|
||||
|
||||
const MyNode& gn = grid.getNodeFor(p.state.position);
|
||||
switch (act) {
|
||||
|
||||
case ActivityButterPressure::Activity::STAY:
|
||||
if (gn.getType() == GridNode::TYPE_FLOOR) {return kappa;}
|
||||
if (gn.getType() == GridNode::TYPE_DOOR) {return kappa;}
|
||||
{return 1-kappa;}
|
||||
|
||||
case ActivityButterPressure::Activity::UP:
|
||||
case ActivityButterPressure::Activity::DOWN:
|
||||
if (gn.getType() == GridNode::TYPE_STAIR) {return kappa;}
|
||||
if (gn.getType() == GridNode::TYPE_ELEVATOR) {return kappa;}
|
||||
{return 1-kappa;}
|
||||
|
||||
}
|
||||
|
||||
return 1.0;
|
||||
|
||||
}
|
||||
|
||||
virtual double evaluation(std::vector<K::Particle<MyState>>& particles, const MyObs& observation) override {
|
||||
|
||||
double sum = 0;
|
||||
const WiFiMeasurements wifiObs = Settings::WiFiModel::vg_eval.group(observation.wifi);
|
||||
|
||||
for (K::Particle<MyState>& p : particles) {
|
||||
#pragma omp parallel for num_threads(3)
|
||||
for (int i = 0; i < Settings::numParticles; ++i) {
|
||||
K::Particle<MyState>& p = particles[i];
|
||||
|
||||
// Point3 pos_m = p.state.position.inMeter();
|
||||
// Point3 posOld_m = p.state.positionOld.inMeter();
|
||||
|
||||
const double pWifi = getWIFI(observation, wifiObs, p.state.position);
|
||||
const double pBaroPressure = getBaroPressure(observation, p.state.relativePressure);
|
||||
const double pBaroPressure = getStairProb(p, observation.activity);
|
||||
//const double pBaroPressure = getBaroPressure(observation, p.state.relativePressure);
|
||||
//const double pBeacon = getBEACON(observation, p.state.position);
|
||||
|
||||
//small checks
|
||||
@@ -199,6 +230,8 @@ struct PFEval : public K::ParticleFilterEvaluation<MyState, MyObs> {
|
||||
const double prob = pBaroPressure * pWifi;
|
||||
|
||||
p.weight = prob;
|
||||
|
||||
#pragma omp atomic
|
||||
sum += (prob);
|
||||
|
||||
}
|
||||
|
||||
@@ -18,6 +18,8 @@
|
||||
#include <Indoor/grid/walk/v2/modules/WalkModuleFavorZ.h>
|
||||
#include <Indoor/grid/walk/v2/modules/WalkModulePreventVisited.h>
|
||||
|
||||
#include <Indoor/grid/walk/v2/modules/WalkModuleActivityControl.h>
|
||||
|
||||
struct MyState : public WalkState, public WalkStateHeading, public WalkStateSpread, public WalkStateFavorZ {
|
||||
|
||||
static Floorplan::IndoorMap* map;
|
||||
@@ -77,6 +79,9 @@ struct MyObs {
|
||||
/** wifi measurements */
|
||||
WiFiMeasurements wifi;
|
||||
|
||||
/** detected activity */
|
||||
ActivityButterPressure::Activity activity = ActivityButterPressure::Activity::STAY;
|
||||
|
||||
/** beacon measurements */
|
||||
BeaconMeasurements beacons;
|
||||
|
||||
|
||||
100
code/main.cpp
100
code/main.cpp
@@ -170,11 +170,13 @@ void run(DataSetup setup, int numFile, std::string folder, std::vector<int> gtPa
|
||||
pf.setEvaluation(std::unique_ptr<PFEval>(new PFEval(WiFiModel, beaconModel, grid)));
|
||||
|
||||
//resampling
|
||||
//pf.setResampling(std::unique_ptr<K::ParticleFilterResamplingSimple<MyState>>(new K::ParticleFilterResamplingSimple<MyState>()));
|
||||
//pf.setResampling(std::unique_ptr<K::ParticleFilterResamplingPercent<MyState>>(new K::ParticleFilterResamplingPercent<MyState>(0.4)));
|
||||
//pf.setResampling(std::unique_ptr<NodeResampling<MyState, MyNode>>(new NodeResampling<MyState, MyNode>(*grid)););
|
||||
pf.setResampling(std::unique_ptr<K::ParticleFilterResamplingDivergence<MyState>>(new K::ParticleFilterResamplingDivergence<MyState>()));
|
||||
|
||||
if(Settings::useKLB){
|
||||
pf.setResampling(std::unique_ptr<K::ParticleFilterResamplingDivergence<MyState>>(new K::ParticleFilterResamplingDivergence<MyState>()));
|
||||
} else {
|
||||
//pf.setResampling(std::unique_ptr<K::ParticleFilterResamplingSimple<MyState>>(new K::ParticleFilterResamplingSimple<MyState>()));
|
||||
pf.setResampling(std::unique_ptr<K::ParticleFilterResamplingPercent<MyState>>(new K::ParticleFilterResamplingPercent<MyState>(0.4)));
|
||||
//pf.setResampling(std::unique_ptr<NodeResampling<MyState, MyNode>>(new NodeResampling<MyState, MyNode>(*grid)););
|
||||
}
|
||||
|
||||
pf.setNEffThreshold(0.95);
|
||||
|
||||
@@ -190,6 +192,7 @@ void run(DataSetup setup, int numFile, std::string folder, std::vector<int> gtPa
|
||||
StepDetection sd;
|
||||
TurnDetection td;
|
||||
MotionDetection md;
|
||||
ActivityButterPressure act;
|
||||
|
||||
RelativePressure relBaro; relBaro.setCalibrationTimeframe( Timestamp::fromMS(5000) );
|
||||
|
||||
@@ -236,6 +239,10 @@ void run(DataSetup setup, int numFile, std::string folder, std::vector<int> gtPa
|
||||
obs.relativePressure = relBaro.getPressureRealtiveToStart();
|
||||
obs.sigmaPressure = relBaro.getSigma();
|
||||
|
||||
//activity recognition
|
||||
obs.activity = act.add(ts, fr.getBarometer()[e.idx].data);
|
||||
//activity for transition
|
||||
|
||||
} else if (e.type == Offline::Sensor::LIN_ACC) {
|
||||
md.addLinearAcceleration(ts, fr.getLinearAcceleration()[e.idx].data);
|
||||
|
||||
@@ -249,31 +256,39 @@ void run(DataSetup setup, int numFile, std::string folder, std::vector<int> gtPa
|
||||
|
||||
obs.currentTime = ts;
|
||||
|
||||
const WiFiMeasurements wifiObs = Settings::WiFiModel::vg_eval.group(obs.wifi);
|
||||
MyState est;
|
||||
if(Settings::useKLB){
|
||||
|
||||
std::vector<MyNode> allNodes = grid.getNodes();
|
||||
std::vector<K::Particle<MyState>> particleWifi;
|
||||
for(MyNode node : allNodes){
|
||||
double prob = wiFiProbability.getProbability(node, ts, wifiObs);
|
||||
K::Particle<MyState> tmp (MyState(GridPoint(node.x_cm, node.y_cm, node.z_cm)), prob);
|
||||
particleWifi.push_back(tmp);
|
||||
const WiFiMeasurements wifiObs = Settings::WiFiModel::vg_eval.group(obs.wifi);
|
||||
|
||||
std::vector<MyNode> allNodes = grid.getNodes();
|
||||
std::vector<K::Particle<MyState>> particleWifi;
|
||||
for(MyNode node : allNodes){
|
||||
double prob = wiFiProbability.getProbability(node, ts, wifiObs);
|
||||
K::Particle<MyState> tmp (MyState(GridPoint(node.x_cm, node.y_cm, node.z_cm)), prob);
|
||||
particleWifi.push_back(tmp);
|
||||
}
|
||||
|
||||
if(kld_data.empty()){
|
||||
kld_data.push_back(0.0);
|
||||
}
|
||||
|
||||
double kld = 0.0;
|
||||
|
||||
//set probability distributions.
|
||||
//std::function<double(std::vector<K::Particle<MyState>>&, MyState, std::vector<K::Particle<MyState>>&)> kldFunc = getKernelDensityProbability;
|
||||
std::function<double(std::vector<K::Particle<MyState>>&, MyState, std::vector<K::Particle<MyState>>&)> kldFunc = kldFromMultivariatNormal;
|
||||
|
||||
//update filter
|
||||
est = pf.update(&ctrl, obs, particleWifi, kldFunc, kld);
|
||||
|
||||
kld_data.push_back(kld);
|
||||
} else {
|
||||
est = pf.update(&ctrl, obs);
|
||||
}
|
||||
|
||||
if(kld_data.empty()){
|
||||
kld_data.push_back(0.0);
|
||||
}
|
||||
|
||||
std::function<double(std::vector<K::Particle<MyState>>&, MyState, std::vector<K::Particle<MyState>>&)> kldFunc = getKernelDensityProbability;
|
||||
//std::function<double(std::vector<K::Particle<MyState>>&, MyState, std::vector<K::Particle<MyState>>&)> kldFunc = kldFromMultivariatNormal;
|
||||
|
||||
double kld = 0.0;
|
||||
MyState est = pf.update(&ctrl, obs, particleWifi, kldFunc, kld);
|
||||
Point3 estPos = est.position.inMeter();
|
||||
|
||||
//double kld = getKernelDensityProbability(pf, WiFiModel, obs, grid, ts, plot);
|
||||
//double kld = kldFromMultivariatNormal(pf, estPos, particleWifi, plot);
|
||||
kld_data.push_back(kld);
|
||||
|
||||
//current ground truth position
|
||||
Point3 gtPos = gtInterpolator.get(static_cast<uint64_t>(ts.ms()));
|
||||
|
||||
@@ -298,8 +313,10 @@ void run(DataSetup setup, int numFile, std::string folder, std::vector<int> gtPa
|
||||
//plot.gp << "set label 1001 at screen 0.02, 0.98 'base:" << relBaro.getBaseAvg() << " sigma:" << relBaro.getSigma() << " cur:" << relBaro.getPressureRealtiveToStart() << " hPa " << -relBaro.getPressureRealtiveToStart()/0.10/4.0f << " floor'\n";
|
||||
int minutes = static_cast<int>(ts.sec()) / 60;
|
||||
plot.gp << "set label 1002 at screen 0.02, 0.94 'Time: " << minutes << ":" << static_cast<int>(static_cast<int>(ts.sec())%60) << "'\n";
|
||||
plot.gp << "set label 1002 at screen 0.04, 0.94 'KLD: " << ":" << kld << "'\n";
|
||||
//plot.gp << "set label 1002 at screen 0.98, 0.98 'act:" << ctrl.barometer.act << "'\n";
|
||||
if(Settings::useKLB){
|
||||
plot.gp << "set label 1002 at screen 0.04, 0.94 'KLD: " << ":" << kld_data.back() << "'\n";
|
||||
}
|
||||
plot.gp << "set label 1002 at screen 0.98, 0.98 'act:" << obs.activity << "'\n";
|
||||
|
||||
// error between GT and estimation
|
||||
float err_m = gtPos.getDistance(estPos);
|
||||
@@ -309,7 +326,6 @@ void run(DataSetup setup, int numFile, std::string folder, std::vector<int> gtPa
|
||||
plot.show();
|
||||
usleep(10*10);
|
||||
|
||||
|
||||
lastTimestamp = ts;
|
||||
|
||||
// reset control
|
||||
@@ -350,23 +366,25 @@ void run(DataSetup setup, int numFile, std::string folder, std::vector<int> gtPa
|
||||
K::GnuplotPlot plotkld;
|
||||
K::GnuplotPlotElementLines lines;
|
||||
|
||||
//save as screenshot
|
||||
std::string path = "/home/toni/Documents/programme/localization/IPIN2017/code/eval/"+ folder + "/image" + std::to_string(numFile) + "_" + std::to_string(t);
|
||||
gp << "set terminal png size 1280,720\n";
|
||||
gp << "set output '" << path << "_shennendistance.png'\n";
|
||||
//save as screenshot for klb
|
||||
if(Settings::useKLB){
|
||||
std::string path = "/home/toni/Documents/programme/localization/IPIN2017/code/eval/"+ folder + "/image" + std::to_string(numFile) + "_" + std::to_string(t);
|
||||
gp << "set terminal png size 1280,720\n";
|
||||
gp << "set output '" << path << "_shennendistance.png'\n";
|
||||
|
||||
for(int i=0; i < kld_data.size()-1; ++i){
|
||||
for(int i=0; i < kld_data.size()-1; ++i){
|
||||
|
||||
K::GnuplotPoint2 p1(i, kld_data[i]);
|
||||
K::GnuplotPoint2 p2(i+1, kld_data[i+1]);
|
||||
K::GnuplotPoint2 p1(i, kld_data[i]);
|
||||
K::GnuplotPoint2 p2(i+1, kld_data[i+1]);
|
||||
|
||||
lines.addSegment(p1, p2);
|
||||
lines.addSegment(p1, p2);
|
||||
}
|
||||
|
||||
plotkld.add(&lines);
|
||||
gp.draw(plotkld);
|
||||
gp.flush();
|
||||
}
|
||||
|
||||
plotkld.add(&lines);
|
||||
gp.draw(plotkld);
|
||||
gp.flush();
|
||||
|
||||
std::cout << "finished" << std::endl;
|
||||
sleep(1);
|
||||
|
||||
@@ -380,7 +398,7 @@ int main(int argc, char** argv) {
|
||||
//for(int i = 0; i < 5; ++i){
|
||||
//run(data.IPIN2017, 0, "ipin2017"); // Nexus Path2
|
||||
//run(data.IPIN2017, 1, "ipin2017");
|
||||
run(data.IPIN2017, 4, "ipin2017", Settings::Paths_IPIN2017::path3);
|
||||
//run(data.IPIN2017, 4, "ipin2017", Settings::Paths_IPIN2017::path3);
|
||||
run(data.IPIN2017, 2, "ipin2017", Settings::Paths_IPIN2017::path2);
|
||||
run(data.IPIN2017, 5, "ipin2017", Settings::Paths_IPIN2017::path3);
|
||||
run(data.IPIN2017, 3, "ipin2017", Settings::Paths_IPIN2017::path2);
|
||||
|
||||
Reference in New Issue
Block a user