init push
This commit is contained in:
430
main.cpp
Normal file
430
main.cpp
Normal file
@@ -0,0 +1,430 @@
|
||||
//#include "main.h"
|
||||
|
||||
#include "Settings.h"
|
||||
#include "Plotty.h"
|
||||
|
||||
// navMesh
|
||||
#include "navMesh/mesh.h"
|
||||
#include "navMesh/filter.h"
|
||||
#include "navMesh/meshPlotter.h"
|
||||
|
||||
#include <memory>
|
||||
#include <thread>
|
||||
#include <experimental/filesystem>
|
||||
|
||||
#include <Indoor/floorplan/v2/FloorplanReader.h>
|
||||
#include <Indoor/sensors/radio/model/WiFiModelLogDistCeiling.h>
|
||||
#include <Indoor/sensors/offline/FileReader.h>
|
||||
#include <Indoor/geo/Heading.h>
|
||||
#include <Indoor/geo/Point2.h>
|
||||
#include <Indoor/sensors/imu/TurnDetection.h>
|
||||
#include <Indoor/sensors/imu/StepDetection.h>
|
||||
#include <Indoor/sensors/imu/MotionDetection.h>
|
||||
#include <Indoor/sensors/imu/PoseDetection.h>
|
||||
#include <Indoor/sensors/pressure/RelativePressure.h>
|
||||
#include <Indoor/data/Timestamp.h>
|
||||
#include <Indoor/sensors/radio/model/WiFiModels.h>
|
||||
#include <Indoor/sensors/radio/setup/WiFiOptimizer.h>
|
||||
#include <Indoor/sensors/radio/setup/WiFiOptimizerLogDistCeiling.h>
|
||||
#include <Indoor/sensors/radio/setup/WiFiOptimizerPerFloor.h>
|
||||
|
||||
|
||||
#include <Indoor/math/stats/Statistics.h>
|
||||
|
||||
#include <Indoor/smc/filtering/resampling/ParticleFilterResamplingSimpleImpoverishment.h>
|
||||
#include <Indoor/smc/filtering/resampling/ParticleFilterResamplingKDE.h>
|
||||
#include <Indoor/smc/filtering/resampling/ParticleFilterResamplingKDEPercent.h>
|
||||
|
||||
#include <sys/stat.h>
|
||||
|
||||
Stats::Statistics<float> run(Settings::DataSetup setup, unsigned long numFile, std::string folder) {
|
||||
|
||||
// reading file
|
||||
Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(setup.map);
|
||||
Offline::FileReader fr(setup.training[numFile]);
|
||||
WiFiFingerprints fingerprints(setup.fingerprints);
|
||||
std::ifstream inp(setup.wifiModel, std::ifstream::binary);
|
||||
|
||||
// ground truth
|
||||
std::vector<int> gtPath;
|
||||
for(int i = 0; i < setup.numGTPoints; ++i){gtPath.push_back(i);}
|
||||
Interpolator<uint64_t, Point3> gtInterpolator = fr.getGroundTruthPath(map, gtPath);
|
||||
Stats::Statistics<float> errorStats;
|
||||
|
||||
//calculate distance of path
|
||||
std::vector<Interpolator<uint64_t, Point3>::InterpolatorEntry> gtEntries = gtInterpolator.getEntries();
|
||||
float distance = 0;
|
||||
for(unsigned long i = 1; i < gtEntries.size(); ++i){
|
||||
distance += gtEntries[i].value.getDistance(gtEntries[i-1].value);
|
||||
}
|
||||
|
||||
std::cout << "Distance of Path: " << distance << std::endl;
|
||||
|
||||
// error file
|
||||
const long int t = static_cast<long int>(time(nullptr));
|
||||
auto evalDir = std::experimental::filesystem::path(Settings::errorDir);
|
||||
evalDir.append(folder);
|
||||
|
||||
if (!std::experimental::filesystem::exists(evalDir)) {
|
||||
std::experimental::filesystem::create_directory(evalDir);
|
||||
}
|
||||
|
||||
std::ofstream errorFile;
|
||||
errorFile.open (evalDir.string() + "/" + std::to_string(numFile) + "_" + std::to_string(t) + ".csv");
|
||||
|
||||
std::ofstream activityFile;
|
||||
activityFile.open (evalDir.string() + "/" + std::to_string(numFile) + "_" + std::to_string(t) + "_activity.csv");
|
||||
|
||||
|
||||
// wifi
|
||||
// WiFiModelLogDistCeiling WiFiModel(map);
|
||||
// WiFiModelPerFloor WiFiModelPerFloor(map);
|
||||
// WiFiModelPerBBox WiFiModelPerBBox(map);
|
||||
|
||||
WiFiModel* wifiModel = nullptr;
|
||||
|
||||
// with optimization
|
||||
if(Settings::WiFiModel::optimize){
|
||||
|
||||
if (!inp.good() || (inp.peek()) || inp.eof()) {
|
||||
|
||||
Assert::isFalse(fingerprints.getFingerprints().empty(), "no fingerprints available!");
|
||||
|
||||
if (Settings::WiFiModel::useRegionalOpt) {
|
||||
|
||||
// use a regional optimization scheme (one per floor)
|
||||
|
||||
WiFiOptimizer::PerFloor opt(map, Settings::WiFiModel::vg_calib, WiFiOptimizer::Mode::QUALITY);
|
||||
WiFiOptimizer::LogDistCeiling ldc(map, Settings::WiFiModel::vg_calib, WiFiOptimizer::Mode::QUALITY);
|
||||
|
||||
// add all fingerprints to the optimizer (optimizer will add them to the correct floor/model)
|
||||
for (const WiFiFingerprint& fp : fingerprints.getFingerprints()) {
|
||||
opt.addFingerprint(fp);
|
||||
}
|
||||
|
||||
wifiModel = dynamic_cast<WiFiModel*>(opt.optimizeAll(ldc.MIN_2_FPS));
|
||||
wifiModel->saveXML(setup.wifiModel);
|
||||
|
||||
} else {
|
||||
|
||||
/** NOTE: Funktioniert fürs Museum VIEL VIEL Besser */
|
||||
// use one model per AP for the whole map
|
||||
|
||||
wifiModel = dynamic_cast<WiFiModel*>(new WiFiModelLogDistCeiling(map));
|
||||
WiFiOptimizer::LogDistCeiling opt(map, Settings::WiFiModel::vg_calib);
|
||||
for (const WiFiFingerprint& fp : fingerprints.getFingerprints()) {
|
||||
opt.addFingerprint(fp);
|
||||
}
|
||||
const WiFiOptimizer::LogDistCeiling::APParamsList res = opt.optimizeAll(opt.NONE);
|
||||
|
||||
for (const WiFiOptimizer::LogDistCeiling::APParamsMAC& ap : res.get()) {
|
||||
const WiFiModelLogDistCeiling::APEntry entry(ap.params.getPos(), ap.params.txp, ap.params.exp, ap.params.waf);
|
||||
(dynamic_cast<WiFiModelLogDistCeiling*>(wifiModel))->addAP(ap.mac, entry);
|
||||
}
|
||||
|
||||
wifiModel->saveXML(setup.wifiModel);
|
||||
|
||||
}
|
||||
|
||||
} else {
|
||||
|
||||
// load WiFiModel from file. The factory will create the correct instance
|
||||
//WiFiModel->loadXML(setup.wifiModel);
|
||||
WiFiModelFactory fac(map);
|
||||
wifiModel = fac.loadXML(setup.wifiModel);
|
||||
|
||||
}
|
||||
|
||||
} else {
|
||||
// without optimization
|
||||
wifiModel = dynamic_cast<WiFiModel*>(new WiFiModelLogDistCeiling(map));
|
||||
(dynamic_cast<WiFiModelLogDistCeiling*>(wifiModel))->loadAPs(map, Settings::WiFiModel::TXP, Settings::WiFiModel::EXP, Settings::WiFiModel::WAF);
|
||||
Assert::isFalse(wifiModel->getAllAPs().empty(), "no AccessPoints stored within the map.xml");
|
||||
}
|
||||
|
||||
|
||||
|
||||
// mesh
|
||||
NM::NavMeshSettings set;
|
||||
MyNavMesh mesh;
|
||||
MyNavMeshFactory fac(&mesh, set);
|
||||
fac.build(map);
|
||||
|
||||
//add destination
|
||||
NM::NavMeshDijkstra::stamp(mesh, gtEntries.back().value);
|
||||
|
||||
const Point3 srcPath0(26, 43, 7.5f);
|
||||
const Point3 srcPath1(62, 38, 1.7f);
|
||||
const Point3 srcPath2(62, 38, 1.8f);
|
||||
const Point3 srcPath3(62, 38, 1.8f);
|
||||
|
||||
// add shortest-path to destination
|
||||
//const Point3 dst(51, 45, 1.7);
|
||||
//const Point3 dst(25, 45, 0);
|
||||
//NM::NavMeshDijkstra::stamp<MyNavMeshTriangle>(mesh, dst);
|
||||
|
||||
// debug show
|
||||
//MeshPlotter dbg;
|
||||
//dbg.addFloors(map);
|
||||
//dbg.addOutline(map);
|
||||
//dbg.addMesh(mesh);
|
||||
//dbg.addDijkstra(mesh);
|
||||
//dbg.draw();
|
||||
|
||||
Plotty plot(map);
|
||||
plot.buildFloorplan();
|
||||
plot.setGroundTruth(gtPath);
|
||||
|
||||
// particle-filter
|
||||
const int numParticles = Settings::numParticles;
|
||||
//auto init = std::make_unique<MyPFInitFixed>(&mesh, srcPath0); // known position
|
||||
auto init = std::make_unique<MyPFInitUniform>(&mesh); // uniform distribution
|
||||
auto eval = std::make_unique<MyPFEval>(*wifiModel);
|
||||
auto trans = std::make_unique<MyPFTrans>(mesh, *wifiModel);
|
||||
|
||||
auto resample = std::make_unique<SMC::ParticleFilterResamplingSimple<MyState>>();
|
||||
//auto resample = std::make_unique<SMC::ParticleFilterResamplingKDE<MyState, MyNavMeshTriangle>>(&mesh, Settings::KDE3D::gridSize, Settings::KDE3D::bandwidth);
|
||||
//auto resample = std::make_unique<SMC::ParticleFilterResamplingKDEPercent<MyState, MyNavMeshTriangle>>(&mesh, Settings::KDE3D::gridSize, Settings::KDE3D::bandwidth, 0.75);
|
||||
//auto resample = std::make_unique<SMC::ParticleFilterResamplingSimpleImpoverishment<MyState, MyNavMeshTriangle>>();
|
||||
//auto resample = std::make_unique<SMC::ParticleFilterResamplingKLD<MyState>>();
|
||||
|
||||
//auto estimate = std::make_unique<SMC::ParticleFilterEstimationBoxKDE<MyState>>(map, 0.2, Point2(1,1));
|
||||
auto estimate = std::make_unique<SMC::ParticleFilterEstimationWeightedAverage<MyState>>();
|
||||
//auto estimate = std::make_unique<SMC::ParticleFilterEstimationMax<MyState>>();
|
||||
|
||||
// setup
|
||||
MyFilter pf(numParticles, std::move(init));
|
||||
pf.setEvaluation(std::move(eval));
|
||||
pf.setTransition(std::move(trans));
|
||||
pf.setResampling(std::move(resample));
|
||||
pf.setEstimation(std::move(estimate));
|
||||
pf.setNEffThreshold(0.5);
|
||||
|
||||
// sensors
|
||||
MyControl ctrl;
|
||||
MyObservation obs;
|
||||
|
||||
StepDetection sd;
|
||||
PoseDetection pd;
|
||||
TurnDetection td(dynamic_cast<PoseProvider*>(&pd));
|
||||
RelativePressure relBaro;
|
||||
ActivityDetector act;
|
||||
relBaro.setCalibrationTimeframe( Timestamp::fromMS(5000) );
|
||||
Timestamp lastTimestamp = Timestamp::fromMS(0);
|
||||
int gtActivity = 0;
|
||||
|
||||
// parse each sensor-value within the offline data
|
||||
for (const Offline::Entry& e : fr.getEntries()) {
|
||||
|
||||
const Timestamp ts = Timestamp::fromMS(static_cast<long>(e.ts));
|
||||
|
||||
if (e.type == Offline::Sensor::WIFI) {
|
||||
obs.wifi = fr.getWiFiGroupedByTime()[static_cast<unsigned long>(e.idx)].data;
|
||||
ctrl.wifi = fr.getWiFiGroupedByTime()[static_cast<unsigned long>(e.idx)].data;
|
||||
|
||||
} else if (e.type == Offline::Sensor::ACC) {
|
||||
if (sd.add(ts, fr.getAccelerometer()[static_cast<unsigned long>(e.idx)].data)) {
|
||||
++ctrl.numStepsSinceLastEval;
|
||||
}
|
||||
const Offline::TS<AccelerometerData>& _acc = fr.getAccelerometer()[static_cast<unsigned long>(e.idx)];
|
||||
pd.addAccelerometer(ts, _acc.data);
|
||||
|
||||
//simpleActivity walking / standing
|
||||
act.add(ts, fr.getAccelerometer()[static_cast<unsigned long>(e.idx)].data);
|
||||
|
||||
} else if (e.type == Offline::Sensor::GYRO) {
|
||||
const Offline::TS<GyroscopeData>& _gyr = fr.getGyroscope()[static_cast<unsigned long>(e.idx)];
|
||||
const float delta_gyro = td.addGyroscope(ts, _gyr.data);
|
||||
|
||||
ctrl.headingChangeSinceLastEval += delta_gyro;
|
||||
|
||||
} else if (e.type == Offline::Sensor::BARO) {
|
||||
relBaro.add(ts, fr.getBarometer()[static_cast<unsigned long>(e.idx)].data);
|
||||
obs.relativePressure = relBaro.getPressureRealtiveToStart();
|
||||
obs.sigmaPressure = relBaro.getSigma();
|
||||
|
||||
//simpleActivity stairs up / down
|
||||
act.add(ts, fr.getBarometer()[static_cast<unsigned long>(e.idx)].data);
|
||||
|
||||
activityFile << ts.ms() << " " << gtActivity << " " << static_cast<int>(act.get()) << "\n";
|
||||
|
||||
} else if (e.type == Offline::Sensor::ACTIVITY) {
|
||||
|
||||
//get the activity recorded by the user by pressing a button
|
||||
gtActivity = fr.getActivity()[static_cast<unsigned long>(e.idx)].data;
|
||||
}
|
||||
|
||||
if (ctrl.numStepsSinceLastEval > 0) {
|
||||
|
||||
obs.currentTime = ts;
|
||||
ctrl.currentTime = ts;
|
||||
|
||||
// if(ctrl.numStepsSinceLastEval > 0){
|
||||
// pf.updateTransitionOnly(&ctrl);
|
||||
// }
|
||||
MyState est = pf.update(&ctrl, obs); //pf.updateEvaluationOnly(obs);
|
||||
ctrl.afterEval();
|
||||
Point3 gtPos = gtInterpolator.get(static_cast<uint64_t>(ts.ms())) + Point3(0,0,0.1f);
|
||||
lastTimestamp = ts;
|
||||
|
||||
ctrl.lastEstimate = est.pos.pos;
|
||||
|
||||
//plot
|
||||
//dbg.showParticles(pf.getParticles());
|
||||
//dbg.setCurPos(est.pos.pos);
|
||||
//dbg.setGT(gtPos);
|
||||
//dbg.addEstimationNode(est.pos.pos);
|
||||
//dbg.addGroundTruthNode(gtPos);
|
||||
//dbg.setTimeInMinute(static_cast<int>(ts.sec()) / 60, static_cast<int>(static_cast<int>(ts.sec())%60));
|
||||
//dbg.draw();
|
||||
|
||||
//get shortest path to destination and plot
|
||||
est.pos = mesh.getLocationNearestTo(est.pos.pos);
|
||||
std::vector<NM::NavMeshLocation<MyNavMeshTriangle>> path = est.pos.tria->getPathToDestination<MyNavMeshTriangle>(est.pos.pos);
|
||||
plot.setPathToDestination(path);
|
||||
|
||||
plot.showParticles(pf.getParticles());
|
||||
plot.setCurEst(est.pos.pos);
|
||||
plot.setGroundTruth(gtPos);
|
||||
plot.addEstimationNode(est.pos.pos);
|
||||
plot.setActivity(static_cast<int>(act.get()));
|
||||
|
||||
plot.plot();
|
||||
|
||||
//error calc with penalty for wrong floor
|
||||
float errorFactor = 3.0f;
|
||||
Point3 gtPosError = Point3(gtPos.x, gtPos.y, errorFactor * gtPos.z);
|
||||
Point3 estError = Point3(est.pos.pos.x, est.pos.pos.y, errorFactor * est.pos.pos.z);
|
||||
float err_m = gtPosError.getDistance(estError);
|
||||
errorStats.add(err_m);
|
||||
errorFile << ts.ms() << " " << err_m << "\n";
|
||||
|
||||
|
||||
//stuff for drawing
|
||||
// plot.gp << "set terminal png size 1280,720\n";
|
||||
// plot.gp.setOutput("/tmp/videoSparkasse/" + std::to_string(i++) + ".png");
|
||||
|
||||
// int degree = ((30 - i) % 360);
|
||||
// if (degree < 0){degree += 360;}
|
||||
// plot.gp << "set view 63,"<< degree << "\n";
|
||||
// plot.gp << "set autoscale xy\n";
|
||||
// plot.gp << "set autoscale z\n";
|
||||
// plot.plot();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
// get someting on console
|
||||
std::cout << "Statistical Analysis Filtering: " << std::endl;
|
||||
std::cout << "Median: " << errorStats.getMedian() << " Average: " << errorStats.getAvg() << " Std: " << errorStats.getStdDev() << std::endl;
|
||||
|
||||
// save the statistical data in file
|
||||
errorFile << "========================================================== \n";
|
||||
errorFile << "Average of all statistical data: \n";
|
||||
errorFile << "Median: " << errorStats.getMedian() << "\n";
|
||||
errorFile << "Average: " << errorStats.getAvg() << "\n";
|
||||
errorFile << "Standard Deviation: " << errorStats.getStdDev() << "\n";
|
||||
errorFile << "75 Quantil: " << errorStats.getQuantile(0.75) << "\n";
|
||||
errorFile.close();
|
||||
|
||||
//activityFile << "===================================================== \n";
|
||||
//activityFile << "Falsche Zustandswechsel: " << numFalseActivityChange;
|
||||
activityFile.close();
|
||||
|
||||
/* plot in gp file */
|
||||
std::ofstream plotFile;
|
||||
plotFile.open(evalDir.string() + "/" + std::to_string(numFile) + "_" + std::to_string(t) + ".gp");
|
||||
plot.saveToFile(plotFile);
|
||||
plotFile.close();
|
||||
|
||||
//save also a png image, just for a better overview
|
||||
plot.printOverview(evalDir.string() + "/" + std::to_string(numFile) + "_" + std::to_string(t));
|
||||
plot.plot();
|
||||
|
||||
plot.closeStream();
|
||||
|
||||
return errorStats;
|
||||
}
|
||||
|
||||
int main() {
|
||||
|
||||
Stats::Statistics<float> statsAVG;
|
||||
Stats::Statistics<float> statsMedian;
|
||||
Stats::Statistics<float> statsSTD;
|
||||
Stats::Statistics<float> statsQuantil;
|
||||
Stats::Statistics<float> tmp;
|
||||
|
||||
std::string evaluationName = "Test_ParticleFilter_Standard";
|
||||
|
||||
for(int i = 0; i < 1; ++i){
|
||||
|
||||
|
||||
for(unsigned long j = 0; j < Settings::data.Path0.training.size(); ++j){
|
||||
tmp = run(Settings::data.Path0, j, evaluationName);
|
||||
statsMedian.add(tmp.getMedian());
|
||||
statsAVG.add(tmp.getAvg());
|
||||
statsSTD.add(tmp.getStdDev());
|
||||
statsQuantil.add(tmp.getQuantile(0.75));
|
||||
}
|
||||
|
||||
// for(int j = 0; j < Settings::data.Path1.training.size(); ++j){
|
||||
// tmp = run(Settings::data.Path1, j, evaluationName);
|
||||
// statsMedian.add(tmp.getMedian());
|
||||
// statsAVG.add(tmp.getAvg());
|
||||
// statsSTD.add(tmp.getStdDev());
|
||||
// statsQuantil.add(tmp.getQuantile(0.75));
|
||||
// }
|
||||
|
||||
// for(int j = 0; j < Settings::data.Path2.training.size(); ++j){
|
||||
// tmp = run(Settings::data.Path2, j, evaluationName);
|
||||
// statsMedian.add(tmp.getMedian());
|
||||
// statsAVG.add(tmp.getAvg());
|
||||
// statsSTD.add(tmp.getStdDev());
|
||||
// statsQuantil.add(tmp.getQuantile(0.75));
|
||||
// }
|
||||
|
||||
// for(int j = 0; j < Settings::data.Path3.training.size(); ++j){
|
||||
// tmp = run(Settings::data.Path3, j, evaluationName);
|
||||
// statsMedian.add(tmp.getMedian());
|
||||
// statsAVG.add(tmp.getAvg());
|
||||
// statsSTD.add(tmp.getStdDev());
|
||||
// statsQuantil.add(tmp.getQuantile(0.75));
|
||||
// }
|
||||
|
||||
// for(int j = 0; j < 1; ++j){
|
||||
// tmp = run(Settings::data.Stairs, j, evaluationName);
|
||||
// statsMedian.add(tmp.getMedian());
|
||||
// statsAVG.add(tmp.getAvg());
|
||||
// statsSTD.add(tmp.getStdDev());
|
||||
// statsQuantil.add(tmp.getQuantile(0.75));
|
||||
// }
|
||||
|
||||
std::cout << "Iteration " << i << " completed" << std::endl;
|
||||
}
|
||||
|
||||
std::cout << "==========================================================" << std::endl;
|
||||
std::cout << "Average of all statistical data: " << std::endl;
|
||||
std::cout << "Median: " << statsMedian.getAvg() << std::endl;
|
||||
std::cout << "Average: " << statsAVG.getAvg() << std::endl;
|
||||
std::cout << "Standard Deviation: " << statsSTD.getAvg() << std::endl;
|
||||
std::cout << "75 Quantil: " << statsQuantil.getAvg() << std::endl;
|
||||
std::cout << "==========================================================" << std::endl;
|
||||
|
||||
//EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS
|
||||
std::ofstream finalStatisticFile;
|
||||
finalStatisticFile.open (Settings::errorDir + evaluationName + ".csv", std::ios_base::app);
|
||||
|
||||
finalStatisticFile << "========================================================== \n";
|
||||
finalStatisticFile << "Average of all statistical data: \n";
|
||||
finalStatisticFile << "Median: " << statsMedian.getAvg() << "\n";
|
||||
finalStatisticFile << "Average: " << statsAVG.getAvg() << "\n";
|
||||
finalStatisticFile << "Standard Deviation: " << statsSTD.getAvg() << "\n";
|
||||
finalStatisticFile << "75 Quantil: " << statsQuantil.getAvg() << "\n";
|
||||
finalStatisticFile << "========================================================== \n";
|
||||
|
||||
finalStatisticFile.close();
|
||||
|
||||
//std::this_thread::sleep_for(std::chrono::seconds(60));
|
||||
|
||||
}
|
||||
Reference in New Issue
Block a user