init push

This commit is contained in:
toni
2019-08-07 17:59:38 +02:00
commit 89a1542dae
8 changed files with 2013 additions and 0 deletions

430
main.cpp Normal file
View File

@@ -0,0 +1,430 @@
//#include "main.h"
#include "Settings.h"
#include "Plotty.h"
// navMesh
#include "navMesh/mesh.h"
#include "navMesh/filter.h"
#include "navMesh/meshPlotter.h"
#include <memory>
#include <thread>
#include <experimental/filesystem>
#include <Indoor/floorplan/v2/FloorplanReader.h>
#include <Indoor/sensors/radio/model/WiFiModelLogDistCeiling.h>
#include <Indoor/sensors/offline/FileReader.h>
#include <Indoor/geo/Heading.h>
#include <Indoor/geo/Point2.h>
#include <Indoor/sensors/imu/TurnDetection.h>
#include <Indoor/sensors/imu/StepDetection.h>
#include <Indoor/sensors/imu/MotionDetection.h>
#include <Indoor/sensors/imu/PoseDetection.h>
#include <Indoor/sensors/pressure/RelativePressure.h>
#include <Indoor/data/Timestamp.h>
#include <Indoor/sensors/radio/model/WiFiModels.h>
#include <Indoor/sensors/radio/setup/WiFiOptimizer.h>
#include <Indoor/sensors/radio/setup/WiFiOptimizerLogDistCeiling.h>
#include <Indoor/sensors/radio/setup/WiFiOptimizerPerFloor.h>
#include <Indoor/math/stats/Statistics.h>
#include <Indoor/smc/filtering/resampling/ParticleFilterResamplingSimpleImpoverishment.h>
#include <Indoor/smc/filtering/resampling/ParticleFilterResamplingKDE.h>
#include <Indoor/smc/filtering/resampling/ParticleFilterResamplingKDEPercent.h>
#include <sys/stat.h>
Stats::Statistics<float> run(Settings::DataSetup setup, unsigned long numFile, std::string folder) {
// reading file
Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(setup.map);
Offline::FileReader fr(setup.training[numFile]);
WiFiFingerprints fingerprints(setup.fingerprints);
std::ifstream inp(setup.wifiModel, std::ifstream::binary);
// ground truth
std::vector<int> gtPath;
for(int i = 0; i < setup.numGTPoints; ++i){gtPath.push_back(i);}
Interpolator<uint64_t, Point3> gtInterpolator = fr.getGroundTruthPath(map, gtPath);
Stats::Statistics<float> errorStats;
//calculate distance of path
std::vector<Interpolator<uint64_t, Point3>::InterpolatorEntry> gtEntries = gtInterpolator.getEntries();
float distance = 0;
for(unsigned long i = 1; i < gtEntries.size(); ++i){
distance += gtEntries[i].value.getDistance(gtEntries[i-1].value);
}
std::cout << "Distance of Path: " << distance << std::endl;
// error file
const long int t = static_cast<long int>(time(nullptr));
auto evalDir = std::experimental::filesystem::path(Settings::errorDir);
evalDir.append(folder);
if (!std::experimental::filesystem::exists(evalDir)) {
std::experimental::filesystem::create_directory(evalDir);
}
std::ofstream errorFile;
errorFile.open (evalDir.string() + "/" + std::to_string(numFile) + "_" + std::to_string(t) + ".csv");
std::ofstream activityFile;
activityFile.open (evalDir.string() + "/" + std::to_string(numFile) + "_" + std::to_string(t) + "_activity.csv");
// wifi
// WiFiModelLogDistCeiling WiFiModel(map);
// WiFiModelPerFloor WiFiModelPerFloor(map);
// WiFiModelPerBBox WiFiModelPerBBox(map);
WiFiModel* wifiModel = nullptr;
// with optimization
if(Settings::WiFiModel::optimize){
if (!inp.good() || (inp.peek()) || inp.eof()) {
Assert::isFalse(fingerprints.getFingerprints().empty(), "no fingerprints available!");
if (Settings::WiFiModel::useRegionalOpt) {
// use a regional optimization scheme (one per floor)
WiFiOptimizer::PerFloor opt(map, Settings::WiFiModel::vg_calib, WiFiOptimizer::Mode::QUALITY);
WiFiOptimizer::LogDistCeiling ldc(map, Settings::WiFiModel::vg_calib, WiFiOptimizer::Mode::QUALITY);
// add all fingerprints to the optimizer (optimizer will add them to the correct floor/model)
for (const WiFiFingerprint& fp : fingerprints.getFingerprints()) {
opt.addFingerprint(fp);
}
wifiModel = dynamic_cast<WiFiModel*>(opt.optimizeAll(ldc.MIN_2_FPS));
wifiModel->saveXML(setup.wifiModel);
} else {
/** NOTE: Funktioniert fürs Museum VIEL VIEL Besser */
// use one model per AP for the whole map
wifiModel = dynamic_cast<WiFiModel*>(new WiFiModelLogDistCeiling(map));
WiFiOptimizer::LogDistCeiling opt(map, Settings::WiFiModel::vg_calib);
for (const WiFiFingerprint& fp : fingerprints.getFingerprints()) {
opt.addFingerprint(fp);
}
const WiFiOptimizer::LogDistCeiling::APParamsList res = opt.optimizeAll(opt.NONE);
for (const WiFiOptimizer::LogDistCeiling::APParamsMAC& ap : res.get()) {
const WiFiModelLogDistCeiling::APEntry entry(ap.params.getPos(), ap.params.txp, ap.params.exp, ap.params.waf);
(dynamic_cast<WiFiModelLogDistCeiling*>(wifiModel))->addAP(ap.mac, entry);
}
wifiModel->saveXML(setup.wifiModel);
}
} else {
// load WiFiModel from file. The factory will create the correct instance
//WiFiModel->loadXML(setup.wifiModel);
WiFiModelFactory fac(map);
wifiModel = fac.loadXML(setup.wifiModel);
}
} else {
// without optimization
wifiModel = dynamic_cast<WiFiModel*>(new WiFiModelLogDistCeiling(map));
(dynamic_cast<WiFiModelLogDistCeiling*>(wifiModel))->loadAPs(map, Settings::WiFiModel::TXP, Settings::WiFiModel::EXP, Settings::WiFiModel::WAF);
Assert::isFalse(wifiModel->getAllAPs().empty(), "no AccessPoints stored within the map.xml");
}
// mesh
NM::NavMeshSettings set;
MyNavMesh mesh;
MyNavMeshFactory fac(&mesh, set);
fac.build(map);
//add destination
NM::NavMeshDijkstra::stamp(mesh, gtEntries.back().value);
const Point3 srcPath0(26, 43, 7.5f);
const Point3 srcPath1(62, 38, 1.7f);
const Point3 srcPath2(62, 38, 1.8f);
const Point3 srcPath3(62, 38, 1.8f);
// add shortest-path to destination
//const Point3 dst(51, 45, 1.7);
//const Point3 dst(25, 45, 0);
//NM::NavMeshDijkstra::stamp<MyNavMeshTriangle>(mesh, dst);
// debug show
//MeshPlotter dbg;
//dbg.addFloors(map);
//dbg.addOutline(map);
//dbg.addMesh(mesh);
//dbg.addDijkstra(mesh);
//dbg.draw();
Plotty plot(map);
plot.buildFloorplan();
plot.setGroundTruth(gtPath);
// particle-filter
const int numParticles = Settings::numParticles;
//auto init = std::make_unique<MyPFInitFixed>(&mesh, srcPath0); // known position
auto init = std::make_unique<MyPFInitUniform>(&mesh); // uniform distribution
auto eval = std::make_unique<MyPFEval>(*wifiModel);
auto trans = std::make_unique<MyPFTrans>(mesh, *wifiModel);
auto resample = std::make_unique<SMC::ParticleFilterResamplingSimple<MyState>>();
//auto resample = std::make_unique<SMC::ParticleFilterResamplingKDE<MyState, MyNavMeshTriangle>>(&mesh, Settings::KDE3D::gridSize, Settings::KDE3D::bandwidth);
//auto resample = std::make_unique<SMC::ParticleFilterResamplingKDEPercent<MyState, MyNavMeshTriangle>>(&mesh, Settings::KDE3D::gridSize, Settings::KDE3D::bandwidth, 0.75);
//auto resample = std::make_unique<SMC::ParticleFilterResamplingSimpleImpoverishment<MyState, MyNavMeshTriangle>>();
//auto resample = std::make_unique<SMC::ParticleFilterResamplingKLD<MyState>>();
//auto estimate = std::make_unique<SMC::ParticleFilterEstimationBoxKDE<MyState>>(map, 0.2, Point2(1,1));
auto estimate = std::make_unique<SMC::ParticleFilterEstimationWeightedAverage<MyState>>();
//auto estimate = std::make_unique<SMC::ParticleFilterEstimationMax<MyState>>();
// setup
MyFilter pf(numParticles, std::move(init));
pf.setEvaluation(std::move(eval));
pf.setTransition(std::move(trans));
pf.setResampling(std::move(resample));
pf.setEstimation(std::move(estimate));
pf.setNEffThreshold(0.5);
// sensors
MyControl ctrl;
MyObservation obs;
StepDetection sd;
PoseDetection pd;
TurnDetection td(dynamic_cast<PoseProvider*>(&pd));
RelativePressure relBaro;
ActivityDetector act;
relBaro.setCalibrationTimeframe( Timestamp::fromMS(5000) );
Timestamp lastTimestamp = Timestamp::fromMS(0);
int gtActivity = 0;
// parse each sensor-value within the offline data
for (const Offline::Entry& e : fr.getEntries()) {
const Timestamp ts = Timestamp::fromMS(static_cast<long>(e.ts));
if (e.type == Offline::Sensor::WIFI) {
obs.wifi = fr.getWiFiGroupedByTime()[static_cast<unsigned long>(e.idx)].data;
ctrl.wifi = fr.getWiFiGroupedByTime()[static_cast<unsigned long>(e.idx)].data;
} else if (e.type == Offline::Sensor::ACC) {
if (sd.add(ts, fr.getAccelerometer()[static_cast<unsigned long>(e.idx)].data)) {
++ctrl.numStepsSinceLastEval;
}
const Offline::TS<AccelerometerData>& _acc = fr.getAccelerometer()[static_cast<unsigned long>(e.idx)];
pd.addAccelerometer(ts, _acc.data);
//simpleActivity walking / standing
act.add(ts, fr.getAccelerometer()[static_cast<unsigned long>(e.idx)].data);
} else if (e.type == Offline::Sensor::GYRO) {
const Offline::TS<GyroscopeData>& _gyr = fr.getGyroscope()[static_cast<unsigned long>(e.idx)];
const float delta_gyro = td.addGyroscope(ts, _gyr.data);
ctrl.headingChangeSinceLastEval += delta_gyro;
} else if (e.type == Offline::Sensor::BARO) {
relBaro.add(ts, fr.getBarometer()[static_cast<unsigned long>(e.idx)].data);
obs.relativePressure = relBaro.getPressureRealtiveToStart();
obs.sigmaPressure = relBaro.getSigma();
//simpleActivity stairs up / down
act.add(ts, fr.getBarometer()[static_cast<unsigned long>(e.idx)].data);
activityFile << ts.ms() << " " << gtActivity << " " << static_cast<int>(act.get()) << "\n";
} else if (e.type == Offline::Sensor::ACTIVITY) {
//get the activity recorded by the user by pressing a button
gtActivity = fr.getActivity()[static_cast<unsigned long>(e.idx)].data;
}
if (ctrl.numStepsSinceLastEval > 0) {
obs.currentTime = ts;
ctrl.currentTime = ts;
// if(ctrl.numStepsSinceLastEval > 0){
// pf.updateTransitionOnly(&ctrl);
// }
MyState est = pf.update(&ctrl, obs); //pf.updateEvaluationOnly(obs);
ctrl.afterEval();
Point3 gtPos = gtInterpolator.get(static_cast<uint64_t>(ts.ms())) + Point3(0,0,0.1f);
lastTimestamp = ts;
ctrl.lastEstimate = est.pos.pos;
//plot
//dbg.showParticles(pf.getParticles());
//dbg.setCurPos(est.pos.pos);
//dbg.setGT(gtPos);
//dbg.addEstimationNode(est.pos.pos);
//dbg.addGroundTruthNode(gtPos);
//dbg.setTimeInMinute(static_cast<int>(ts.sec()) / 60, static_cast<int>(static_cast<int>(ts.sec())%60));
//dbg.draw();
//get shortest path to destination and plot
est.pos = mesh.getLocationNearestTo(est.pos.pos);
std::vector<NM::NavMeshLocation<MyNavMeshTriangle>> path = est.pos.tria->getPathToDestination<MyNavMeshTriangle>(est.pos.pos);
plot.setPathToDestination(path);
plot.showParticles(pf.getParticles());
plot.setCurEst(est.pos.pos);
plot.setGroundTruth(gtPos);
plot.addEstimationNode(est.pos.pos);
plot.setActivity(static_cast<int>(act.get()));
plot.plot();
//error calc with penalty for wrong floor
float errorFactor = 3.0f;
Point3 gtPosError = Point3(gtPos.x, gtPos.y, errorFactor * gtPos.z);
Point3 estError = Point3(est.pos.pos.x, est.pos.pos.y, errorFactor * est.pos.pos.z);
float err_m = gtPosError.getDistance(estError);
errorStats.add(err_m);
errorFile << ts.ms() << " " << err_m << "\n";
//stuff for drawing
// plot.gp << "set terminal png size 1280,720\n";
// plot.gp.setOutput("/tmp/videoSparkasse/" + std::to_string(i++) + ".png");
// int degree = ((30 - i) % 360);
// if (degree < 0){degree += 360;}
// plot.gp << "set view 63,"<< degree << "\n";
// plot.gp << "set autoscale xy\n";
// plot.gp << "set autoscale z\n";
// plot.plot();
}
}
// get someting on console
std::cout << "Statistical Analysis Filtering: " << std::endl;
std::cout << "Median: " << errorStats.getMedian() << " Average: " << errorStats.getAvg() << " Std: " << errorStats.getStdDev() << std::endl;
// save the statistical data in file
errorFile << "========================================================== \n";
errorFile << "Average of all statistical data: \n";
errorFile << "Median: " << errorStats.getMedian() << "\n";
errorFile << "Average: " << errorStats.getAvg() << "\n";
errorFile << "Standard Deviation: " << errorStats.getStdDev() << "\n";
errorFile << "75 Quantil: " << errorStats.getQuantile(0.75) << "\n";
errorFile.close();
//activityFile << "===================================================== \n";
//activityFile << "Falsche Zustandswechsel: " << numFalseActivityChange;
activityFile.close();
/* plot in gp file */
std::ofstream plotFile;
plotFile.open(evalDir.string() + "/" + std::to_string(numFile) + "_" + std::to_string(t) + ".gp");
plot.saveToFile(plotFile);
plotFile.close();
//save also a png image, just for a better overview
plot.printOverview(evalDir.string() + "/" + std::to_string(numFile) + "_" + std::to_string(t));
plot.plot();
plot.closeStream();
return errorStats;
}
int main() {
Stats::Statistics<float> statsAVG;
Stats::Statistics<float> statsMedian;
Stats::Statistics<float> statsSTD;
Stats::Statistics<float> statsQuantil;
Stats::Statistics<float> tmp;
std::string evaluationName = "Test_ParticleFilter_Standard";
for(int i = 0; i < 1; ++i){
for(unsigned long j = 0; j < Settings::data.Path0.training.size(); ++j){
tmp = run(Settings::data.Path0, j, evaluationName);
statsMedian.add(tmp.getMedian());
statsAVG.add(tmp.getAvg());
statsSTD.add(tmp.getStdDev());
statsQuantil.add(tmp.getQuantile(0.75));
}
// for(int j = 0; j < Settings::data.Path1.training.size(); ++j){
// tmp = run(Settings::data.Path1, j, evaluationName);
// statsMedian.add(tmp.getMedian());
// statsAVG.add(tmp.getAvg());
// statsSTD.add(tmp.getStdDev());
// statsQuantil.add(tmp.getQuantile(0.75));
// }
// for(int j = 0; j < Settings::data.Path2.training.size(); ++j){
// tmp = run(Settings::data.Path2, j, evaluationName);
// statsMedian.add(tmp.getMedian());
// statsAVG.add(tmp.getAvg());
// statsSTD.add(tmp.getStdDev());
// statsQuantil.add(tmp.getQuantile(0.75));
// }
// for(int j = 0; j < Settings::data.Path3.training.size(); ++j){
// tmp = run(Settings::data.Path3, j, evaluationName);
// statsMedian.add(tmp.getMedian());
// statsAVG.add(tmp.getAvg());
// statsSTD.add(tmp.getStdDev());
// statsQuantil.add(tmp.getQuantile(0.75));
// }
// for(int j = 0; j < 1; ++j){
// tmp = run(Settings::data.Stairs, j, evaluationName);
// statsMedian.add(tmp.getMedian());
// statsAVG.add(tmp.getAvg());
// statsSTD.add(tmp.getStdDev());
// statsQuantil.add(tmp.getQuantile(0.75));
// }
std::cout << "Iteration " << i << " completed" << std::endl;
}
std::cout << "==========================================================" << std::endl;
std::cout << "Average of all statistical data: " << std::endl;
std::cout << "Median: " << statsMedian.getAvg() << std::endl;
std::cout << "Average: " << statsAVG.getAvg() << std::endl;
std::cout << "Standard Deviation: " << statsSTD.getAvg() << std::endl;
std::cout << "75 Quantil: " << statsQuantil.getAvg() << std::endl;
std::cout << "==========================================================" << std::endl;
//EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS
std::ofstream finalStatisticFile;
finalStatisticFile.open (Settings::errorDir + evaluationName + ".csv", std::ios_base::app);
finalStatisticFile << "========================================================== \n";
finalStatisticFile << "Average of all statistical data: \n";
finalStatisticFile << "Median: " << statsMedian.getAvg() << "\n";
finalStatisticFile << "Average: " << statsAVG.getAvg() << "\n";
finalStatisticFile << "Standard Deviation: " << statsSTD.getAvg() << "\n";
finalStatisticFile << "75 Quantil: " << statsQuantil.getAvg() << "\n";
finalStatisticFile << "========================================================== \n";
finalStatisticFile.close();
//std::this_thread::sleep_for(std::chrono::seconds(60));
}