\documentclass[conference]{IEEEtran} \usepackage{cite} % \usepackage[pdftex]{graphicx} % \graphicspath{{../pdf/}{../jpeg/}} % \DeclareGraphicsExtensions{.pdf,.jpeg,.png} \usepackage{amsmath} %\usepackage{array} % \usepackage[caption=false,font=footnotesize]{subfig} %\usepackage{url} % correct bad hyphenation here \hyphenation{op-tical net-works semi-conduc-tor} \newcommand{\dop} [1]{\ensuremath{ \mathop{\mathrm{d}#1} }} \newcommand{\R} {\ensuremath{ \mathbf{R} }} \begin{document} % % paper title % Titles are generally capitalized except for words such as a, an, and, as, % at, but, by, for, in, nor, of, on, or, the, to and up, which are usually % not capitalized unless they are the first or last word of the title. % Linebreaks \\ can be used within to get better formatting as desired. % Do not put math or special symbols in the title. \title{Bare Demo of IEEEtran.cls\\ for IEEE Conferences} % author names and affiliations % use a multiple column layout for up to three different % affiliations \author{ \IEEEauthorblockN{Markus Bullmann, Toni Fetzer, Frank Ebner, and Frank Deinzer}% \IEEEauthorblockA{% Faculty of Computer Science and Business Information Systems\\ University of Applied Sciences W\"urzburg-Schweinfurt\\ W\"urzburg, Germany\\ \{markus.bullmann, toni.fetzer, frank.ebner, frank.deinzer\}@fhws.de\\ } } \maketitle \begin{abstract} The abstract goes here. \end{abstract} % no keywords % For peer review papers, you can put extra information on the cover % page as needed: % \ifCLASSOPTIONpeerreview % \begin{center} \bfseries EDICS Category: 3-BBND \end{center} % \fi % % For peerreview papers, this IEEEtran command inserts a page break and % creates the second title. It will be ignored for other modes. \IEEEpeerreviewmaketitle \section{Introduction} % KDE wellknown nonparametic estimation method % Flexibility is paid with slow speed % Finding optimal bandwidth % Expensive computation \section{Related work} % original work rosenblatt/parzen % binned version silverman, scott, härdle % -> Fourier transfom % other approaches Fast Gaussian Transform \section{Kernel Density Estimation} % KDE by rosenblatt and parzen % general KDE % Gauss Kernel % Formula Gauss KDE % -> complexity/operation count % Binned KDE % Binned Gauss KDE % -> complexity/operation count The histogram is a simple and for a long time the most used non-parametric estimator. However, its inability to produce a continuous estimate dismisses it for many applications where a smooth distribution is assumed. In contrast, the KDE is often the preferred tool because of its ability to produce a continuous estimate and its flexibility. Given $n$ independently observed realizations of the observation set $X=(x_1,\dots,x_n)$, the kernel density estimate $\hat{f}_n$ of the density function $f$ of the underlying distribution is given with \begin{equation} \label{eq:kede} \hat{f}_n = \frac{1}{nh} \sum_{i=1}^{n} K \left( \frac{x-X_i}{h} \right) \text{,} %= \frac{1}{n} \sum_{i=1}^{n} K_h(x-x_i) \end{equation} where $K$ is the kernel function and $h\in\R^+$ is an arbitrary smoothing parameter called bandwidth. While any density function can be used as the kernel function $K$ (such that $\int K(u) \dop{u} = 1$), a variety of popular choices of the kernel function $K$ exits. Commonly the Gaussian kernel is used. \section{Box Filter} % Basic box filter formula % Recursive form % Gauss Blur Filter % Repetitive Box filter to approx Gauss % Simple multipass, n/m approach, extended box filter \section{Combination} \section{Experiments} \section{Conclusion} The conclusion goes here. % use section* for acknowledgment %\section*{Acknowledgment} %The authors would like to thank... % trigger a \newpage just before the given reference % number - used to balance the columns on the last page % adjust value as needed - may need to be readjusted if % the document is modified later %\IEEEtriggeratref{8} % The "triggered" command can be changed if desired: %\IEEEtriggercmd{\enlargethispage{-5in}} % references section \bibliographystyle{IEEEtran} \bibliography{IEEEabrv,egbib} \end{document}