working on introduction
This commit is contained in:
@@ -1,5 +1,47 @@
|
|||||||
\section{Introduction}
|
\section{Introduction}
|
||||||
|
|
||||||
|
Sensor fusion approaches are often based upon probabilistic descriptions like particle filters, using samples to represent the distribution of a dynamical system.
|
||||||
|
To update the system recursively in time, probabilistic sensor models process the noise measurements and a state transition function provides the system's dynamics.
|
||||||
|
Therefore a sample or particle is a representation of one possible system state, e.g. the position of a pedestrian within a building.
|
||||||
|
In most real world scenarios one is then interested in finding the most probable state within the state space.
|
||||||
|
In the discrete manner of the sample representation this is often done by
|
||||||
|
|
||||||
|
%interested in the most proper state within the state space of the dynamic system
|
||||||
|
%echte antwort computationel complex deswegen %weighted-average -> problem multimodal; sample mit höhsten wert -> springt viel rum
|
||||||
|
%-> Density -> KDE
|
||||||
|
|
||||||
|
%Egal auf welchem Weg das sample set entstanden ist, am ende muss ein verwertbarer wert rauskommen. irgendein
|
||||||
|
|
||||||
|
After calculating
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
In real world scenarios
|
||||||
|
|
||||||
|
|
||||||
|
%find the state that describs our probleme the best
|
||||||
|
%
|
||||||
|
|
||||||
|
% ... in many real world scenarios an estimate of the problem state is required e.g. the position of a pedestrian within a building...
|
||||||
|
%this is often done by calculating the weighted-average of all samples or
|
||||||
|
|
||||||
|
%however multimodalities.
|
||||||
|
|
||||||
|
% in the optimal case
|
||||||
|
|
||||||
|
bessere entscheidung kde raus machen, als einfach nur
|
||||||
|
|
||||||
|
to receive this information
|
||||||
|
|
||||||
|
based upon a set of descrete samples
|
||||||
|
|
||||||
|
%for this purpose parameteric estimators like ... are often used in real time scenarios because of their low complexity and short computatinal time.
|
||||||
|
|
||||||
|
% however,
|
||||||
|
non parameteric estimators like kde
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\cite{Deinzer01-CIV}
|
\cite{Deinzer01-CIV}
|
||||||
% KDE wellknown nonparametic estimation method
|
% KDE wellknown nonparametic estimation method
|
||||||
% Flexibility is paid with slow speed
|
% Flexibility is paid with slow speed
|
||||||
|
|||||||
Reference in New Issue
Block a user