Some text
This commit is contained in:
@@ -15,6 +15,10 @@
|
|||||||
% correct bad hyphenation here
|
% correct bad hyphenation here
|
||||||
\hyphenation{op-tical net-works semi-conduc-tor}
|
\hyphenation{op-tical net-works semi-conduc-tor}
|
||||||
|
|
||||||
|
|
||||||
|
\newcommand{\dop} [1]{\ensuremath{ \mathop{\mathrm{d}#1} }}
|
||||||
|
\newcommand{\R} {\ensuremath{ \mathbf{R} }}
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
%
|
%
|
||||||
% paper title
|
% paper title
|
||||||
@@ -29,22 +33,16 @@
|
|||||||
% author names and affiliations
|
% author names and affiliations
|
||||||
% use a multiple column layout for up to three different
|
% use a multiple column layout for up to three different
|
||||||
% affiliations
|
% affiliations
|
||||||
\author{\IEEEauthorblockN{Michael Shell}
|
\author{
|
||||||
\IEEEauthorblockA{School of Electrical and\\Computer Engineering\\
|
|
||||||
Georgia Institute of Technology\\
|
\IEEEauthorblockN{Markus Bullmann, Toni Fetzer, Frank Ebner, and Frank Deinzer}%
|
||||||
Atlanta, Georgia 30332--0250\\
|
\IEEEauthorblockA{%
|
||||||
Email: http://www.michaelshell.org/contact.html}
|
Faculty of Computer Science and Business Information Systems\\
|
||||||
\and
|
University of Applied Sciences W\"urzburg-Schweinfurt\\
|
||||||
\IEEEauthorblockN{Homer Simpson}
|
W\"urzburg, Germany\\
|
||||||
\IEEEauthorblockA{Twentieth Century Fox\\
|
\{markus.bullmann, toni.fetzer, frank.ebner, frank.deinzer\}@fhws.de\\
|
||||||
Springfield, USA\\
|
}
|
||||||
Email: homer@thesimpsons.com}
|
}
|
||||||
\and
|
|
||||||
\IEEEauthorblockN{James Kirk\\ and Montgomery Scott}
|
|
||||||
\IEEEauthorblockA{Starfleet Academy\\
|
|
||||||
San Francisco, California 96678--2391\\
|
|
||||||
Telephone: (800) 555--1212\\
|
|
||||||
Fax: (888) 555--1212}}
|
|
||||||
|
|
||||||
|
|
||||||
\maketitle
|
\maketitle
|
||||||
@@ -70,29 +68,49 @@ The abstract goes here.
|
|||||||
|
|
||||||
|
|
||||||
\section{Introduction}
|
\section{Introduction}
|
||||||
% no \IEEEPARstart
|
% KDE wellknown nonparametic estimation method
|
||||||
This demo file is intended to serve as a ``starter file''
|
% Flexibility is paid with slow speed
|
||||||
for IEEE conference papers produced under \LaTeX\ using
|
% Finding optimal bandwidth
|
||||||
IEEEtran.cls version 1.8b and later.
|
% Expensive computation
|
||||||
% You must have at least 2 lines in the paragraph with the drop letter
|
|
||||||
% (should never be an issue)
|
|
||||||
I wish you the best of success.
|
|
||||||
|
|
||||||
\hfill mds
|
|
||||||
|
|
||||||
\hfill August 26, 2015
|
|
||||||
|
|
||||||
\subsection{Subsection Heading Here}
|
|
||||||
Subsection text here.
|
|
||||||
|
|
||||||
|
|
||||||
\subsubsection{Subsubsection Heading Here}
|
|
||||||
Subsubsection text here.
|
|
||||||
|
|
||||||
\section{Related work}
|
\section{Related work}
|
||||||
|
% original work rosenblatt/parzen
|
||||||
|
% binned version silverman, scott, härdle
|
||||||
|
% -> Fourier transfom
|
||||||
|
% other approaches Fast Gaussian Transform
|
||||||
|
|
||||||
|
\section{Kernel Density Estimation}
|
||||||
|
% KDE by rosenblatt and parzen
|
||||||
|
% general KDE
|
||||||
|
% Gauss Kernel
|
||||||
|
% Formula Gauss KDE
|
||||||
|
% -> complexity/operation count
|
||||||
|
% Binned KDE
|
||||||
|
% Binned Gauss KDE
|
||||||
|
% -> complexity/operation count
|
||||||
|
|
||||||
|
The histogram is a simple and for a long time the most used non-parametric estimator.
|
||||||
|
However, its inability to produce a continuous estimate dismisses it for many applications where a smooth distribution is assumed.
|
||||||
|
In contrast, the KDE is often the preferred tool because of its ability to produce a continuous estimate and its flexibility.
|
||||||
|
Given $n$ independently observed realizations of the observation set $X=(x_1,\dots,x_n)$, the kernel density estimate $\hat{f}_n$ of the density function $f$ of the underlying distribution is given with
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:kede}
|
||||||
|
\hat{f}_n = \frac{1}{nh} \sum_{i=1}^{n} K \left( \frac{x-X_i}{h} \right) \text{,} %= \frac{1}{n} \sum_{i=1}^{n} K_h(x-x_i)
|
||||||
|
\end{equation}
|
||||||
|
where $K$ is the kernel function and $h\in\R^+$ is an arbitrary smoothing parameter called bandwidth.
|
||||||
|
While any density function can be used as the kernel function $K$ (such that $\int K(u) \dop{u} = 1$), a variety of popular choices of the kernel function $K$ exits.
|
||||||
|
Commonly the Gaussian kernel is used.
|
||||||
|
|
||||||
|
|
||||||
|
\section{Box Filter}
|
||||||
|
% Basic box filter formula
|
||||||
|
% Recursive form
|
||||||
|
% Gauss Blur Filter
|
||||||
|
% Repetitive Box filter to approx Gauss
|
||||||
|
% Simple multipass, n/m approach, extended box filter
|
||||||
|
|
||||||
|
\section{Combination}
|
||||||
|
|
||||||
\section{Bla}
|
|
||||||
\section{Blub}
|
|
||||||
|
|
||||||
\section{Experiments}
|
\section{Experiments}
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user