Small fixes
This commit is contained in:
@@ -52,8 +52,8 @@ However, both cases do not give a deeper insight of the error behavior of our me
|
||||
\subsection{Performance}
|
||||
In the following, we underpin the promising theoretical linear time complexity of our method with empirical time measurements compared to other methods.
|
||||
All tests are performed on a Intel Core \mbox{i5-7600K} CPU with a frequency of \SI{4.2}{\giga\hertz}, and \SI{16}{\giga\byte} main memory.
|
||||
We compare our C++ implementation of the extended box filter based KDE approximation to the KernSmooth R package and the \qq{FastKDE} Python implementation \cite{oBrien2016fast}.
|
||||
The KernSmooth packages provides a FFT-based BKDE implementation based on optimized C functions at its core.
|
||||
We compare our C++ implementation of the box filter based KDE approximation to the \texttt{ks} R package and the fastKDE Python implementation \cite{oBrien2016fast}.
|
||||
The \texttt{ks} packages provides a FFT-based BKDE implementation based on optimized C functions at its core.
|
||||
% Vergleich zu weighted average (in c++) um unseren großen Geschwindigkeitsvorteil zu zeigen.
|
||||
With state estimation problems in mind, we additionally provide a C++ implementation of a weighted average estimator.
|
||||
\commentByToni{Vielleicht sollten wir hier noch paar Worte über die Implementierung verlieren. Ist das alles std c++? nehmen wir iwas mega kraßes? usw. vielleicht im camera ready sogar nen link zum coder oder sowas.}
|
||||
|
||||
Reference in New Issue
Block a user