From 62fceaa815c97defbb8e323b4f94de729837941f Mon Sep 17 00:00:00 2001 From: MBulli Date: Sat, 17 Feb 2018 10:34:48 +0100 Subject: [PATCH] Crucial clarification of BKDE's complexity --- tex/chapters/kde.tex | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/tex/chapters/kde.tex b/tex/chapters/kde.tex index acbbd2e..36886cc 100644 --- a/tex/chapters/kde.tex +++ b/tex/chapters/kde.tex @@ -101,12 +101,12 @@ Clearly, a large value of $G$ produces a estimate close to the regular KDE, but However, it is unknown what particular $G$ gives the best trade-off for any given sample set. In general, there is no definite answer because the amount of binning depends on the structure of the unknown density and the sample size \cite{hall1996accuracy}. -A naive implementation of \eqref{eq:binKde} reduces the number evaluations to $\landau{G^2}$ \cite{fan1994fast}. -Due to the fixed grid spacing a faster $\landau{G}$ algorithm can be used, because most of the kernel evaluations are the same and can be reused. -%, as each $g_j-g_{j-k}=k\delta$ is independent of $j$ \cite{fan1994fast}. -This is usually highlighted as the striking computational benefit of the BKDE. -\commentByToni{Das liest sich jetzt so, als wäre der BKDE schon sau schnell. Warum machen wir dann überhaupt noch was?} +A naive implementation of \eqref{eq:binKde} reduces the number of kernel evaluations to $\landau{G^2}$, assuming that $G