Added missing cites
This commit is contained in:
@@ -11,7 +11,7 @@ It was subject to extensive research and its theoretical properties are well und
|
||||
A comprehensive reference is given by Scott \cite{scott2015}.
|
||||
Although classified as non-parametric, the KDE depends on two free parameters, the kernel function and its bandwidth.
|
||||
The selection of a \qq{good} bandwidth is still an open problem and heavily researched.
|
||||
An extensive overview regarding the topic of automatic bandwith selection is given by \cite{heidenreich2013bandwith}.
|
||||
An extensive overview regarding the topic of automatic bandwith selection is given by \cite{heidenreich2013bandwidth}.
|
||||
%However, the automatic selection of the bandwidth is not subject of this work and we refer to the literature \cite{turlach1993bandwidth}.
|
||||
|
||||
The great flexibility of the KDE renders it very useful for many applications.
|
||||
@@ -33,10 +33,9 @@ The term fast Gauss transform was coined by Greengard \cite{greengard1991fast} w
|
||||
% However, the complexity grows exponentially with dimension. \cite{Improved Fast Gauss Transform and Efficient Kernel Density Estimation}
|
||||
|
||||
% FastKDE, passed on ECF and nuFFT
|
||||
Recent methods based on the \qq{self-consistent} KDE proposed by Bernacchia and Pigolotti allow to obtain an estimate without any assumptions.
|
||||
Recent methods based on the \qq{self-consistent} KDE proposed by Bernacchia and Pigolotti \cite{bernacchia2011self} allow to obtain an estimate without any assumptions, i.e. the kernel and bandwidth are both derived during the estimation.
|
||||
They define a Fourier-based filter on the empirical characteristic function of a given dataset.
|
||||
The computation time was further reduced by \etal{O'Brien} using a non-uniform fast Fourier transform (FFT) algorithm to efficiently transform the data into Fourier space.
|
||||
Therefore, the data is not required to be on a grid.
|
||||
The computation time was further reduced by \etal{O'Brien} using a non-uniform fast Fourier transform (FFT) algorithm to efficiently transform the data into Fourier space \cite{oBrien2016fast}.
|
||||
|
||||
% binning => FFT
|
||||
In general, it is desirable to omit a grid, as the data points do not necessary fall onto equally spaced points.
|
||||
|
||||
Reference in New Issue
Block a user