Improved kde & mvg
This commit is contained in:
@@ -1,4 +1,47 @@
|
||||
\section{Usage}
|
||||
|
||||
\subsection{Extension to multi-dimensional data}
|
||||
\todo{Absatz zum Thema 2D - Extension to multi-dimensional data}
|
||||
|
||||
% KDE:
|
||||
%So far only the univariate case was considered.
|
||||
%This is due to the fact, that univariate kernel estimators can quite easily be extended to multivariate distributions.
|
||||
%A common approach is to apply an univariate kernel with a possibly different bandwidth in each dimension.
|
||||
%These kind of multivariate kernel is called product kernel as the multivariate kernel result is the product of each individual univariate kernel.
|
||||
%
|
||||
%Given a multivariate random variable $X=(x_1,\dots ,x_d)$ in $d$ dimensions.
|
||||
%The sample $\bm{X}$ is a $n\times d$ matrix defined as \cite[162]{scott2015}
|
||||
%\begin{equation}
|
||||
% \bm{X}=
|
||||
% \begin{pmatrix}
|
||||
% X_1 \\
|
||||
% \vdots \\
|
||||
% X_n \\
|
||||
% \end{pmatrix}
|
||||
% =
|
||||
% \begin{pmatrix}
|
||||
% x_{11} & \dots & x_{1d} \\
|
||||
% \vdots & \ddots & \vdots \\
|
||||
% x_{n1} & \dots & x_{nd}
|
||||
% \end{pmatrix} \text{.}
|
||||
%\end{equation}
|
||||
%
|
||||
%The multivariate kernel density estimator $\hat{f}$ which defines the estimate pointwise at $\bm{x}=(x_1, \dots, x_d)^T$ is given as \cite[162]{scott2015}
|
||||
%\begin{equation}
|
||||
% \hat{f}(\bm{x}) = \frac{1}{nh_1 \dots h_d} \sum_{i=1}^{n} \left[ \prod_{j=1}^{d} K\left( \frac{x_j-x_{ij}}{h_j} \right) \right] \text{.}
|
||||
%\end{equation}
|
||||
%where the bandwidth is given as a vector $\bm{h}=(h_1, \dots, h_d)$.
|
||||
|
||||
%Multivariate Gauss-Kernel
|
||||
%\begin{equation}
|
||||
%K(u)=\frac{1}{(2\pi)^{d/2}} \expp{-\frac{1}{2} \bm{x}^T \bm{x}}
|
||||
%\end{equation}
|
||||
|
||||
% Gaus:
|
||||
%If the filter kernel is separable, the convolution is also separable i.e. multi-dimensional convolution can be computed as individual one-dimensional convolutions with a one-dimensional kernel.
|
||||
%Because of $e^{x^2+y^2} = e^{x^2}\cdot e^{y^2}$ the Gaussian filter is separable and can be easily applied to multi-dimensional signals. \todo{quelle}
|
||||
|
||||
|
||||
%wie benutzen wir das ganze jetzt? auf was muss ich achten?
|
||||
|
||||
% Am Beispiel 2D Daten
|
||||
@@ -9,7 +52,8 @@
|
||||
% - separiert in jeder dim einzeln
|
||||
% Maximum aus Filter ergebnis nehmen
|
||||
|
||||
\todo{Absatz zum Thema 2D}
|
||||
|
||||
|
||||
|
||||
The objective of our method is to allow a reliable recover of the most probable state from a time-sequential Monte Carlo sensor fusion system.
|
||||
Assuming a sample based representation, our method allows to estimate the density of the unknown distribution of the state space in a narrow time frame.
|
||||
|
||||
Reference in New Issue
Block a user