Box & boxKDE algos + notation fixes
This commit is contained in:
@@ -1,5 +1,4 @@
|
||||
\section{Extension to multi-dimensional data}
|
||||
\todo{WIP}
|
||||
So far only univariate sample sets were considered.
|
||||
This is due to the fact, that the equations of the KDE \eqref{eq:kde}, BKDE \eqref{eq:binKde}, Gaussian filter \eqref{eq:gausFilt}, and the box filter \eqref{eq:boxFilt} are quite easily extended to multi-dimensional input.
|
||||
Each method can be seen as several one-dimensional problems combined to a multi-dimensional result.
|
||||
@@ -11,22 +10,7 @@ Multivariate kernel functions can be constructed in various ways, however, a pop
|
||||
Such a kernel is constructed by combining several univariate kernels into a product, where each kernel is applied in each dimension with a possibly different bandwidth.
|
||||
|
||||
Given a multivariate random variable $X=(x_1,\dots ,x_d)$ in $d$ dimensions.
|
||||
The sample $\bm{X}$ is a $n\times d$ matrix defined as \cite[162]{scott2015}
|
||||
\begin{equation}
|
||||
\bm{X}=
|
||||
\begin{pmatrix}
|
||||
X_1 \\
|
||||
\vdots \\
|
||||
X_n \\
|
||||
\end{pmatrix}
|
||||
=
|
||||
\begin{pmatrix}
|
||||
x_{11} & \dots & x_{1d} \\
|
||||
\vdots & \ddots & \vdots \\
|
||||
x_{n1} & \dots & x_{nd}
|
||||
\end{pmatrix} \text{.}
|
||||
\end{equation}
|
||||
|
||||
The sample $\bm{X}$ is a $n\times d$ matrix defined as \cite[162]{scott2015}.
|
||||
The multivariate KDE $\hat{f}$ which defines the estimate pointwise at $\bm{x}=(x_1, \dots, x_d)^T$ is given as \cite[162]{scott2015}
|
||||
\begin{equation}
|
||||
\label{eq:mvKDE}
|
||||
@@ -41,16 +25,17 @@ In addition, only smoothing in the direction of the axes are possible.
|
||||
If smoothing in other directions is necessary, the computation needs to be done on a prerotated sample set and the estimate needs to be rotated back to fit the original coordinate system \cite{wand1994fast}.
|
||||
|
||||
For the multivariate BKDE, in addition to the kernel function the grid and the binning rules need to be extended to multivariate data.
|
||||
\todo{Reicht hier text oder müssen Formeln her?}
|
||||
|
||||
Their extensions are rather straightforward, as the grid is easily defined on many dimensions.
|
||||
Likewise, the ideas of common and linear binning rule scale with the dimensionality \cite{wand1994fast}.
|
||||
|
||||
In general multi-dimensional filters are multi-dimensional convolution operations.
|
||||
However, by utilizing the separability property of convolution a straightforward and a more efficient implementation can be found.
|
||||
Convolution is separable if the filter kernel is separable, i.e. it can be split into successive convolutions of several kernels.
|
||||
In example, the Gaussian filter is separable, because of $e^{x^2+y^2} = e^{x^2}\cdot e^{y^2}$.
|
||||
Likewise digital filters based on such kernels are called separable filters.
|
||||
They are easily applied to multi-dimensional signals, because the input signal can be filtered in each dimension separately by an one-dimensional filter.
|
||||
They are easily applied to multi-dimensional signals, because the input signal can be filtered in each dimension individually by an one-dimensional filter.
|
||||
|
||||
|
||||
The Gaussian filter is separable, because of $e^{x^2+y^2} = e^{x^2}\cdot e^{y^2}$.
|
||||
|
||||
|
||||
% KDE:
|
||||
|
||||
Reference in New Issue
Block a user