This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
Fusion2016/code/eval/EvalBase.h

366 lines
10 KiB
C++

#ifndef EVALBASE_H
#define EVALBASE_H
#include "../Settings.h"
#include "../Helper.h"
#include "../Vis.h"
#include <KLib/math/filter/particles/ParticleFilter.h>
#include <KLib/math/statistics/Statistics.h>
#include "GroundTruthWay.h"
#include "../particles/MyState.h"
#include "../particles/MyObservation.h"
#include "../particles/MyEvaluation.h"
#include "../particles/MyTransition.h"
#include "../particles/MyInitializer.h"
#include "../reader/SensorReader.h"
#include "../reader/SensorReaderStep.h"
#include "../reader/SensorReaderTurn.h"
#include "../lukas/TurnObservation.h"
#include "../lukas/StepObservation.h"
#include "../toni/BarometerSensorReader.h"
#include "../frank/WiFiSensorReader.h"
#include "../frank/BeaconSensorReader.h"
#include "../frank/OrientationSensorReader.h"
#include <Indoor/misc/Time.h>
class EvalBase {
protected:
Grid<MyGridNode> grid;
Helper::FHWSFloors floors;
Vis vis;
K::ParticleFilter<MyState, MyControl, MyObservation>* pf;
SensorReader* sr;
SensorReaderTurn* srt;
SensorReaderStep* srs;
std::string runName;
GroundTruthWay gtw;
// OLD
//std::vector<int> way0 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2, 1, 0};
//std::vector<int> way1 = {29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 13, 14, 15, 16, 17, 18, 19, 2, 1, 0};
//std::vector<int> way2 = {29, 28, 27, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 19, 18, 17, 16, 15, 14, 13, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29};
// NEW
std::vector<int> path1 = {29, 28,27,26,255,25,24,23,22,21,20};
std::vector<int> path1dbl = {29, 29, 28,27,26,255,25,24,23,22,21,20};
std::vector<int> path2 = {19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 23, 7, 6};
std::vector<int> path2dbl = {19, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 23, 7, 6};
std::vector<int> path3 = {5, 27, 26, 255, 25, 4, 3, 2, 215, 1, 0, 30, 31};
std::vector<int> path3dbl = {5, 5, 27, 26, 255, 25, 4, 3, 2, 215, 1, 0, 30, 31};
std::vector<int> path4 = {29, 28, 27, 32, 33, 34, 35, 36, 10, 9, 8, 22, 37, 38, 39, 40, 41, 42, 43, 44};
std::vector<int> path4dbl = {29, 29, 28, 27, 32, 33, 34, 35, 36, 10, 9, 8, 22, 37, 38, 39, 40, 41, 42, 43, 44}; // duplicate 1st waypoint!
float stepSize = 0.71;
public:
EvalBase() : grid(MiscSettings::gridSize_cm), floors(Helper::getFloors(grid)) {
// build the grid
Helper::buildTheGrid(grid, floors);
// setup the visualisation
vis.addFloor(floors.f0, floors.h0);
vis.addFloor(floors.f1, floors.h1);
vis.addFloor(floors.f2, floors.h2);
vis.addFloor(floors.f3, floors.h3);
vis.floors.setColorHex("#666666");
vis.groundTruth.setCustomAttr("dashtype 3");
vis.groundTruth.setColorHex("#009900");
vis.gp << "unset cbrange\n";
}
static GridPoint conv(const Point3& p) {
return GridPoint(p.x, p.y, p.z);
}
static GroundTruthWay getGroundTruthWay(SensorReader& sr, const std::unordered_map<int, Point3>& waypoints, std::vector<int> ids) {
// construct the ground-truth-path by using all contained waypoint ids
std::vector<Point3> path;
for (int id : ids) {
auto it = waypoints.find(id);
if(it == waypoints.end()) {throw "not found";}
path.push_back(it->second);
}
// new created the timed path
GroundTruthWay gtw;
int i = 0;
while (sr.hasNext()) {
const SensorEntry se = sr.getNext();
if (se.data.empty()) {continue;} // why necessary??
if (se.idx == 99) {
gtw.add(se.ts, path[i]);
++i;
}
}
// ensure the sensor-data contained usable timestamps for the ground-truth mapping
assert(i>0);
sr.rewind();
return gtw;
}
void run() {
// sensor numbers
const int s_wifi = 8; const int s_beacons = 9; const int s_barometer = 5; const int s_orientation = 6;
//const int s_linearAcceleration = 2;
std::list<TurnObservation> turn_observations;
std::list<StepObservation> step_observations;
//Create an BarometerSensorReader
BarometerSensorReader baroSensorReader;
//Read all turn Observations
while(srt->hasNext()) {
SensorEntryTurn set = srt->getNext();
TurnObservation to;
to.ts = set.ts;
to.delta_heading = set.delta_heading;
to.delta_motion = set.delta_motion;
turn_observations.push_back(to);
}
//Step Observations
while(srs->hasNext()) {
SensorEntryStep ses = srs->getNext();
StepObservation so;
so.ts = ses.ts;
step_observations.push_back(so);
}
// the to-be-evaluated observation
MyObservation obs;
obs.step = new StepObservation(); obs.step->steps = 0;
obs.turn = new TurnObservation(); obs.turn->delta_heading = 0; obs.turn->delta_motion = 0;
// control data
MyControl ctrl;
std::vector<Point3> pathEst;
uint64_t lastTransitionTS = 0;
int64_t start_time = -1;
K::Statistics<float> statsTime;
K::Statistics<double> stats;
int cnt = 0;
std::vector<float> errors;
// process each single sensor reading
while(sr->hasNext()) {
// get the next sensor reading from the CSV
const SensorEntry se = sr->getNext();
//start_time needed for time calculation of steps and turns
obs.latestSensorDataTS = se.ts;
if (start_time == -1) {start_time = se.ts;}
int64_t current_time = se.ts - start_time;
switch(se.idx) {
case s_wifi: {
obs.wifi = WiFiSensorReader::readWifi(se);
break;
}
case s_beacons: {
BeaconObservationEntry boe = BeaconSensorReader::getBeacon(se);
if (!boe.mac.empty()) {
obs.beacons.entries.push_back(boe);
} // add the observed beacon
obs.beacons.removeOld(obs.latestSensorDataTS);
break;
}
case s_barometer: {
obs.barometer = baroSensorReader.readBarometer(se);
break;
}
// case s_linearAcceleration:{
// baroSensorReader.readVerticalAcceleration(se);
// break;
// }
case s_orientation: {
obs.orientation = OrientationSensorReader::read(se);
break;
}
}
// process all occurred turns
while (!step_observations.empty() && current_time > step_observations.front().ts) {
const StepObservation _so = step_observations.front(); step_observations.pop_front(); (void) _so;
obs.step->steps++;
ctrl.walked_m = obs.step->steps * stepSize;
}
// process all occurred steps
while (!turn_observations.empty() && current_time > turn_observations.front().ts) {
const TurnObservation _to = turn_observations.front(); turn_observations.pop_front();
obs.turn->delta_heading += _to.delta_heading;
obs.turn->delta_motion += _to.delta_motion;
ctrl.headingChange_rad = Angle::degToRad(obs.turn->delta_heading);
}
// time for a transition?
if (se.ts - lastTransitionTS > MiscSettings::timeSteps) {
auto tick1 = Time::tick();
lastTransitionTS = se.ts;
// timed updates
((MyTransition*)pf->getTransition())->setCurrentTime(lastTransitionTS);
// update the particle filter (transition + eval), estimate a new current position and add it to the estimated path
const MyState est = pf->update(&ctrl, obs);
const Point3 curEst = est.pCur;
// error calculation. compare ground-truth to estimation
const int offset = 0;
const Point3 curGT = gtw.getPosAtTime(se.ts - offset);
const Point3 diff = curEst - curGT;
auto tick2 = Time::tick();
float diffTime = Time::diffMS(tick1, tick2) * 1.25f;
statsTime.add(diffTime);
std::cout << "#" << statsTime.getAvg() << "\t" << diffTime << std::endl;
// skip the first 10 scans due to uniform distribution start
pathEst.push_back(curEst);
const float err = diff.length();
errors.push_back(err);
// skip the first 24 scans due to uniform distribution start (12 seconds)
if (++cnt > 24) {
stats.add(err);
std::cout << stats.asString() << std::endl;
}
// plot
vis.clearStates();
for (int i = 0; i < (int) pf->getParticles().size(); i+=15) {
const K::Particle<MyState>& p = pf->getParticles()[i];
vis.addState(p.state.walkState);
}
vis.setTimestamp(se.ts);
vis.addGroundTruth(gtw);
vis.addEstPath(pathEst);
vis.setEstAndShould(curEst, curGT);
if (obs.barometer != nullptr) {
vis.gp << "set label 112 'baro: " << obs.barometer->hpa << "' at screen 0.1,0.2\n";
}
vis.gp << "set label 111 '" <<ctrl.walked_m << ":" << ctrl.headingChange_rad << "' at screen 0.1,0.1\n";
//vis.gp << "set label 111 '" <<ctrl.walked_m << ":" << obs.orientation.values[0] << "' at screen 0.1,0.1\n";
Point2 p1(0.1, 0.1);
Point2 p2 = p1 + Angle::getPointer(ctrl.headingChange_rad) * 0.05;
//Point2 p2 = p1 + Angle::getPointer(obs.orientation.values[0]) * 0.05;
vis.gp << "set arrow 999 from screen " << p1.x<<","<<p1.y << " to screen " << p2.x<<","<<p2.y<<"\n";
static int dspCnt = 0;
if (++dspCnt > 0) {
vis.show();
usleep(1000*33); // prevent gnuplot errors
dspCnt = 0;
}
}
}
// append error for each run to a file
std::ofstream oTError("/tmp/errors.txt", std::ios_base::app);
oTError << runName << "\n\t"; stats.appendTo(oTError); oTError << "\n\n";
oTError.close();
// detailled error-description
std::ofstream oError("/tmp/err_" + runName + ".dat");
for (float f : errors) {oError << f << "\n";}
oError.close();
// plot-data
std::ofstream oPath("/tmp/path_" + runName + ".dat"); vis.groundTruth.addDataTo(oPath); oPath.close();
std::ofstream oEst("/tmp/est_" + runName + ".dat"); vis.estPath.addDataTo(oEst); oEst.close();
std::ofstream oFloor("/tmp/floors.dat"); vis.floors.addDataTo(oFloor); oFloor.close();
std::ofstream oPlot("/tmp/plot_" + runName + ".gp");
oPlot << "set terminal eps size 3.4,2\n";
oPlot << "set output '" << runName << ".eps'\n";
oPlot << "set termoption dashlength 0.5\n";
oPlot << "set ticslevel 0\n";
oPlot << "set view equal xy\n";
oPlot << "set zrange [0:2200]\n";
oPlot << "set multiplot layout 1,1 scale 2.7,2.7 offset 0,0.23\n";
oPlot << "set view 72,33\n";
oPlot << "unset border\n";
oPlot << "unset xtics\n";
oPlot << "unset ytics\n";
oPlot << "unset ztics\n";
oPlot << "splot \\\n";
oPlot << "'floors.dat' skip 21 notitle with lines lc rgb '#777777', \\\n";
oPlot << "'path_bergwerk_path2_nexus_shortest.dat' skip 21 notitle with lines lw 2.5 dashtype 2 lc rgb '#007700', \\\n";
oPlot << "'est_bergwerk_path2_nexus_shortest.dat' skip 21 notitle with lines lw 2.5 lc rgb '#000099' ";
oPlot.close();
}
};
#endif // EVALBASE_H