\documentclass[fleqn]{beamer} %\usetheme{Warsaw} %\usetheme{Montpellier} %\usetheme{CambridgeUS} %\usetheme{Singapore} %\usetheme{m} \usetheme[everytitleformat=regular]{m} % Costumizing the m-theme here \setbeamertemplate{footline}[text line]{% \parbox{\linewidth}{ \vspace*{-35pt}\insertpagenumber \hfill\inserttitle \hspace*{-30pt} \hfill\includegraphics[width=0.20\textwidth]{gfx/logo_orange} \hspace*{-30pt} } } \definecolor{mWhite}{HTML}{FFFFFF} \definecolor{mOrange}{HTML}{e84e25} \setbeamercolor{frametitle}{% use=mWhite, fg=mWhite, bg=mOrange } \setbeamercolor{alerted text}{% fg=mOrange } % End Costumizing \usepackage[utf8]{inputenc} \usepackage{mathptmx} %\usepackage[scaled=0.9]{helvet} %\usepackage{courier} % font \usepackage{lmodern} %video %\usepackage{multimedia} %\usepackage[3D]{movie15} \usepackage{media9} %\usepackage{wrapfig} \usepackage{graphicx} \usepackage{caption} \usepackage{subcaption} \usepackage{amsmath} \renewcommand{\vec}[1]{\boldsymbol{#1}} \newcommand{\mat}[1]{\boldsymbol{#1}} %\renewcommand{\hat}[1]{\oldhat{\mathbf{#1}}} \newcommand{\SI}[2]{\ensuremath{#1}\text{\,#2}} \newcommand{\SIrange}[3]{\ensuremath{#1} to \ensuremath{#2}\text{\,#3}} \newcommand{\cm}{cm} \newcommand{\meter}{m} \newcommand{\per}{/} \newcommand{\milli}{m} \newcommand{\second}{s} \newcommand{\giga}{G} \newcommand{\hertz}{Hz} \newcommand{\dBm}{dBm} \newcommand{\percent}{\%} \newcommand{\decibel}{dB} \newcommand{\dB}{dB} \newcommand{\degree}{\ensuremath{^{\circ}}} \newcommand{\R}{\mathbb{R}} \newcommand{\N}{\mathbb{N}} \newcommand{\NDist}{\mathcal{N}} \newcommand{\UDist}{\mathcal{U}} \newcommand{\qTurn}{\theta} \newcommand{\qBaro}{\hat\rho_{\text{rel}}} \newcommand{\oWifi}{s_{\text{wifi}}} \newcommand{\oBeacons}{s_{\text{beacons}}} \newcommand{\oStep}{n_\text{step}} \newcommand{\oTurn}{\Delta\theta} \newcommand{\oBaro}{\rho_{\text{rel}}} \newcommand{\ispace}{\vspace{2mm}} \newcommand{\vecB}[2]{\begin{pmatrix} #1\\ #2 \end{pmatrix}} \newcommand{\matD}[4]{\begin{bmatrix} #1 & #2 \\ #3 & #4 \end{bmatrix}} \title{On Prior Navigation Knowledge in Multi Sensor Indoor Localisation} %\author{F. Ebner, T. Fetzer, F. Deinzer, L. Köping, M. Grzegorzek} \author{F. Ebner$^\star$, T. Fetzer$^\star$, F. Deinzer$^\star$, L. Köping$^\dagger$, M. Grzegorzek$^\dagger$} \date{\today} \institute{ $^\star$ University of Applied Sciences W\"urzburg - Schweinfurt \\ $^\dagger$ University of Siegen - Pattern Recognition Group} \begin{document} \maketitle %\frame{\tableofcontents[currentsection]} \frame{\tableofcontents} \section{Overview} \begin{frame} \begin{tabular}{lcr} % icons: https://thenounproject.com/search/?q=graph \includegraphics[width = 0.12\textwidth]{icons/wifi1.eps} \enskip \includegraphics[width = 0.09\textwidth]{icons/ibeacon1.eps} & & \includegraphics[width = 0.14\textwidth]{icons/accel1.eps} \enskip \includegraphics[width = 0.12\textwidth]{icons/gyro1.eps} \\ \small{absolute positioning $(x,y,z)$} & & \small{relative positioning $(x,y)$} \\ \small{\textit{Wi-Fi, iBeacons}} & & \small{\textit{accelerometer, gyroscope}} \\ \\ ~\hspace{4.5cm}~ & & ~\hspace{4.5cm}~\\ \\ \includegraphics[width = 0.12\textwidth]{icons/baro1.eps} & & \includegraphics[width = 0.12\textwidth]{icons/graph1.eps} \enskip \includegraphics[width = 0.12\textwidth]{icons/route1.eps} \\ \small{relative positioning $(z)$} & & \small{motion prediction $(x,y,z)$} \\ \small{\textit{barometer}} & & \small{\textit{graph, routing}} \end{tabular} \end{frame} \section{System} \subsection{Recursive Density Estimation} \begin{frame} \frametitle{Recursive Density Estimation} \begin{itemize} \item<1-> Current State\\ $\vec{q} = (x,y,z, \qTurn, \qBaro)^T, \enskip{} \overbrace{x,y,z \in \R}^{\text{position}}, \enskip \overbrace{\qTurn \in \R}^{\text{heading}},\enskip{} \overbrace{\qBaro \in \R}^{\text{rel. pressure}} $ \\ $\vec{q_0} = $ uniformly distributed \ispace \item<2-> Observation\\ $\vec{o} = (\vec{\oWifi}, \vec{\oBeacons}, \oStep, \oTurn, \oBaro)$ \ispace \item<3-> \small$ \underbrace{ p(\vec{q_t}\mid \vec{o}_{1:t})}_{\text{estimation}} \propto % \underbrace{ p(\vec{o_t} \mid \vec{q_t}) }_{\text{evaluation}}% \int \underbrace{ p(\vec{q_t} \mid \vec{q_{t-1}}, \vec{o_{t-1}}) }_{\text{transition}}% \underbrace{ p(\vec{q_{t-1}} \mid \vec{o}_{1:t-1})}_{\text{recursion}}% d\vec{q}_{t-1}% $ \end{itemize} \end{frame} \subsection{Observation} \begin{frame} \frametitle{Observation} \begin{itemize} \item<1-> a location's probability based on the current sensor readings \begin{equation*} \begin{split} p(\vec{o}_t \mid \vec{q}_t) =&\\ &p(\vec{o}_t \mid \vec{q}_t)_{\text{wifi}} \\ &p(\vec{o}_t \mid \vec{q}_t)_{\text{beacons}} \\ &p(\vec{o}_t \mid \vec{q}_t)_{\text{baro}} \\ \end{split} \end{equation*} \ispace \item<1-> assuming statistical independence \item<1-> \textit{step- and turn detection are used within the transition} \end{itemize} \end{frame} %\begin{frame} % \frametitle{Observation - Wi-Fi/iBeacons} % \begin{itemize} % \item<1-> 2D signal strength prediction\\ % $ % P_r(d) = % \underbrace{P_0}_{\text{reference}}\enskip % \underbrace{- 10 \gamma \cdot \log_{10}(\tfrac{d}{d_0})}_{\text{attenuation per meter}}\enskip % \underbrace{+ X}_{\text{noise}} % ,\enskip\enskip % X \sim \NDist(0,\sigma^2_{\text{wifi}}) % $ % \ispace % \item<2-> 3D signal strength prediction\\ % $ % P_r'(d,\Delta f) = P_r(d) + \Delta f \lambda,\enskip % \underbrace{\Delta f \in \N}_{\text{number of floors}} % ,\enskip % \underbrace{\lambda \approx -8}_{\text{attenuation per floor}} % $ % \ispace % \item<3-> % $p(\vec{o}_t \mid \vec{q}_t)_\text{wifi}=$ % $p(\vec{\oWifi} \mid \vec{q}_t) = \prod_{\oWifi} \NDist(s_i \mid P_r'(d_i, \Delta f_i), \sigma_{\text{wifi}}^2)$,\\ % \vspace{3mm} % $\sigma_{\text{wifi}}$ also depends on the measurement's age\\ % $\Delta f_i = $floors between location and sender\\ % $d_i = \| \underbrace{(\varrho_i^x, \varrho_i^y, \varrho_i^z\cdot h)^T}_{\text{sender's position}} - (q_t^x, q_t^y, q_t^z)^T \|$,\\ % \item<1-> FAST ETWAS ZU VOLL? GRAFIK? % \end{itemize} %\end{frame} \begin{frame} \frametitle{Observation - Wi-Fi/iBeacons} \begin{itemize} \item<1-> $p(\vec{o}_t \mid \vec{q}_t)_\text{wifi}=$ $p(\vec{\oWifi} \mid \vec{q}_t) = \prod_{\oWifi} \NDist(s_i \mid P_r(d_i, \Delta f_i), \sigma_{\text{wifi}}^2)$,\\ \ispace \item<2-> 3D signal strength prediction\\\ispace $ P_r(d,\Delta f) = \underbrace{P_0}_{\text{reference}}\enskip \underbrace{- 10 \gamma \cdot \log_{10}(\tfrac{d}{d_0})}_{\text{attenuation per meter}}\enskip \underbrace{+ \Delta f \lambda}_\text{floor attenuation} \underbrace{+ X}_{\text{ noise }} $ %\\\ispace$ % X \sim \NDist(0,\sigma^2_{\text{wifi}}),\enskip % \underbrace{\Delta f \in \N}_{\text{number of floors}},\enskip % \underbrace{\lambda \approx -8}_{\text{attenuation per floor}} %$ %\ispace \only<3>{ \includegraphics[width = 0.4\textwidth]{gfx/wifi1.png} }% \only<4->{ \includegraphics[width = 0.4\textwidth]{gfx/wifi2.png} }% \only<5>{ \includegraphics[width = 0.4\textwidth]{gfx/wifi3.png} }% \only<6->{ \includegraphics[width = 0.4\textwidth]{gfx/wifi4.png} }% \end{itemize} \end{frame} \begin{frame} \frametitle{Observation - Barometer} \begin{itemize} \item<1-> $p(\vec{o}_t \mid \vec{q}_t)_{\text{baro}} = $ $\NDist(o_t^{\oBaro} \mid q_t^{\qBaro}, \sigma_{\text{baro}}^2)$ \ispace \item<2-> each transition performs a relative pressure prediction:\\ \ispace $q_t^{\qBaro} = q_{t-1}^{\qBaro} + \Delta z \cdot b$, \enskip $\underbrace{\Delta z = q_{t-1}^z - q_{t}^z}_{\text{height change}}$, \enskip $\underbrace{b \in \R}_{\text{pressure change / meter}}$\\ % \vspace{5mm} \begin{figure} \centering \includegraphics[width = 0.4\textwidth]{gfx/baroChange} \end{figure} \end{itemize} \end{frame} %\begin{frame} % \frametitle{Observation - Step/Turn} % \begin{itemize} % \item<1-> $ % p(\vec{o}_t \mid \vec{q}_t, \vec{q}_{t-1})_{\text{step}} = % \begin{cases} % \NDist(d_{\text{obs}} \mid d_{s}, \sigma_{s}^2) & \quad \text{step}\\ % \NDist(d_{\text{obs}} \mid d_{ns}, \sigma_{ns}^2) & \quad \text{no step} % \end{cases} % $,\\ % \ispace % $ d_{\text{obs}} = \| (q_{t-1}^x, q_{t-1}^y)^T - (q_t^x, q_t^y)^T \| $ % \ispace % \item<2-> $ % p(\vec{o}_t \mid \vec{q}_t, \vec{q}_{t-1})_{\text{turn}} = % f_{\text{mises}}(\Delta \alpha \mid \Delta \alpha_t, \kappa), % $\\ % \ispace % $ % \Delta \alpha = \angle \vec{q}_{t} - \angle \vec{q}_{t-1}, \enskip % \Delta \alpha_t = \text{gyroscope} % $ % \end{itemize} %\end{frame} \subsection{Transition} \begin{frame} \frametitle{Transition - Floorplan} \only<1>{% 1) start with the building's floorplan\\% \includegraphics[width = 1.0\textwidth]{gfx/step1}% }% \only<2>{% 2) divide into cells and remove those intersecting with walls\\% \includegraphics[width = 1.0\textwidth]{gfx/step2}% }% \only<3>{% 3) add edges to all (available) adjacent cells\\% \includegraphics[width = 1.0\textwidth]{gfx/step3}% }% \only<4>{% 4) add stairs and remove unreachable cells\\% \includegraphics[width = 1.0\textwidth]{gfx/step4}% }% \end{frame} \newcommand{\leHeading}{\theta_{\text{walk}}} %\newcommand{\leDistance}{d_{\text{walk}}} \newcommand{\leDistance}{d} \begin{frame} \frametitle{Transition - Random Walk} \begin{minipage}{0.49\textwidth} $p(\vec{q}_t \mid \vec{q}_{t-1})$: \begin{enumerate} \item get node $\vec{q}_{t-1}$ belongs to \item draw distance $\leDistance$ to walk%\\ \textit{depends on the number of detected steps} \item repeat until $\leDistance$ is reached \begin{enumerate} \item draw edge $e_{i,j}$ according to its probability $p(e_{i,j})$ \item walk along the edge \item $\leDistance = \leDistance - \|e_{i,j}\|$ \end{enumerate} \end{enumerate} \end{minipage} \begin{minipage}{0.49\textwidth} \begin{figure} \includegraphics[width = 1.0\textwidth]{gfx/walk} \end{figure} \end{minipage} \end{frame} \begin{frame} \frametitle{Transition - Random Walk} \begin{itemize} %\item<1-> each transition $p(\vec{q}_t \mid \vec{q}_{t-1}, \vec{o}_{t-1})$ from $\vec{q}_{t-1}$ to $\vec{q}_t$ is % \begin{itemize} % \item a random walk along several edges % \item uses constraints to describe pedestrian's walking behaviour % \item depends on recent sensor readings (distance to walk, heading) % \item uses prior knowledge of the pedestrian's desired destination % \end{itemize} % \ispace \item<1-> distance to walk\\ \ispace $% \leDistance = \underbrace{{o}_{t-1}^{\oStep}}_\text{steps detected} \cdot \underbrace{s_\text{step}}_\text{step size} + \underbrace{\mathcal{N}(0, \sigma^2_{\leDistance})}_\text{uncertainty} $\newline\newline \item<2-> pedestrian's heading\\ \ispace $p(e_{i,j})_\text{turn} = p(e_{i,j} \mid \leHeading) = \NDist(\angle e_{i,j} \mid \leHeading, \sigma^2_{\text{dev}} )$\\ \ispace $% \underbrace{\leHeading = {q}_{t}^{\qTurn}}_\text{current heading} = \underbrace{{q}_{t-1}^{\qTurn}}_\text{previous heading} + \underbrace{{o}_{t-1}^{\oTurn}}_\text{sensor readings} + \underbrace{\mathcal{N}(0, \sigma^2_{\leHeading})}_\text{uncertainty} $\\ \end{itemize} \end{frame} \newcommand{\dist}[2]{\text{d}(#1, #2)} \newcommand{\dest}{v_\text{dest}} \begin{frame} \frametitle{Transition - Prior Knowledge} \begin{itemize} \item<1-> pedestrian's destination is known beforehand \item<2-> use this prior knowledge to enhance the movement prediction \begin{itemize} \item calculate the shortest path from the desired destination to all other vertices using Dijkstra's algorithm \item favour nodes approaching the destination over others \ispace \item $% p(e_{i,j})_\text{path} = p(v_j \mid v_i) = \begin{cases} \kappa & \dist{v_j}{\dest} < \dist{v_i}{\dest}\\ (1-\kappa) & \text{else} \end{cases} $ \end{itemize} \item<3-> however: calculated path is very unrealistic and sticks to walls \end{itemize} \end{frame} \begin{frame} \frametitle{Transition - Shortest Path} \only<1>{% 1) using shortest path as-is, produces unlikely-to-walk paths \includegraphics[width = 1.0\textwidth]{gfx/path1}% }% \only<2>{% 2) determine likelyhood for a vertex to be visited by the pedestrian \includegraphics[width = 1.0\textwidth]{gfx/step5}% }% \only<3>{% 3) use this likelyhood to adjust Dijkstra's weighting function $\delta(e_{i,h})$ \includegraphics[width = 1.0\textwidth]{gfx/path2}% }% \end{frame} \section{Experiments} %\frame{\tableofcontents[currentsection]} %\begin{frame} % \frametitle{WiFi \& simple transition} % $\overline{e} = \SI{730}{\cm},\enskip\sigma = \SI{395}{\cm}$ % \vspace{-13mm} % \begin{figure} % \centering{} % \includegraphics[width = 1.0\textwidth]{gfx2/paths/path2_wifi_only_simple_trans} % \end{figure} %\end{frame} \begin{frame} %\movie[start=6s, width=11cm,height=6cm, poster]{}{yy.gif} %\includemovie[autoplay, poster]{4cm}{3cm}{yy.gif} %\includemedia[width=5cm,height=4cm]{}{/tmp/mgl/out.mpg} %\newcommand\Wider[2][3em]{% % \makebox[\linewidth][c]{% % \begin{minipage}{\dimexpr\textwidth+#1\relax} % \raggedright#2 % \end{minipage}% % }% %} \vspace{-5mm} \makebox[\linewidth][c]{ \begin{minipage}{\dimexpr\textwidth+5em\relax} \raggedright \includemedia[ activate=pageopen,% width=\textwidth, height=8.0cm,% addresource=exp.flv,% flashvars={% source=exp.flv% &scalemode=letterbox% } ]{}{VPlayer.swf} \end{minipage} } %\includemedia[ % width=0.6\linewidth,% % height=0.3375\linewidth,% % activate=pageopen,% % addresource=nyan.flv, % flashvars={}% %]{}{nyan.flv} \end{frame} \end{document}