\begin{abstract} DUMMY ABSTRACT. We present an indoor localisation system that integrates different sensor modalities, namely Wi-Fi, barometer, iBeacons, step- and turn-detection for localisation of pedestrians within buildings over multiple floors. To model the pedestrian's movement, which is constrained by walls and other obstacles, we propose a state transition based upon random walks on graphs. %This model also frees us from the burden of frequently updating the system. In addition we make use of barometer information to estimate the current floor. \commentByFrank{entweder alle sensoren nennen, oder weglassen? sonst wirkt es nicht schluessig}ds Furthermore, we present a statistical approach to avoid the incorporation of faulty heading information caused by changing the smartphone's position. \commentByFrank{ueber statistical reden wir nochma. einerseits ja, andererseits irgendwie nein.} The evaluation of the system within a $\SI{77}{\meter}$ $\times$ $\SI{55}{\meter}$ sized building with 4 floors shows that high accuracy can be achieved while also keeping the update-rates low. \commentByFrank{We will show that incorporating prior knowledge, such as the pedestrian's desired destination, improves the overall localisation process and prevents various error-conditions.} \commentByToni{Das ist der alte Abstract vom letzten Paper. :D Da wollte ich noch nen ganz neuen schreiben. Das mach ich aber immer gaaaanz am ende} \end{abstract}