introduction as far as possible at this point in time

This commit is contained in:
Toni
2016-01-25 23:03:15 +01:00
parent cada10cbe4
commit f3856d9473
2 changed files with 6 additions and 34 deletions

View File

@@ -1,5 +1,5 @@
\begin{abstract}
We present an indoor localisation system that integrates different sensor modalities, namely Wi-Fi, barometer, iBeacons, step-detection and turn-detection for localisation of pedestrians within buildings over multiple floors. To model the pedestrian's movement, which is constrained by walls and other obstacles, we propose a state transition based upon random walks on graphs. This model also frees us from the burden of frequently updating the system. In addition we make use of barometer information to estimate the current floor. Furthermore, we present a statistical approach to avoid the incorporation of faulty heading information caused by changing the smartphone's position.
DUMMY ABSTRACT. We present an indoor localisation system that integrates different sensor modalities, namely Wi-Fi, barometer, iBeacons, step-detection and turn-detection for localisation of pedestrians within buildings over multiple floors. To model the pedestrian's movement, which is constrained by walls and other obstacles, we propose a state transition based upon random walks on graphs. This model also frees us from the burden of frequently updating the system. In addition we make use of barometer information to estimate the current floor. Furthermore, we present a statistical approach to avoid the incorporation of faulty heading information caused by changing the smartphone's position.
The evaluation of the system within a $\SI{77}{\meter}$ $\times$ $\SI{55}{\meter}$ sized building with 4 floors shows that high accuracy can be achieved while also keeping the update-rates low.
\end{abstract}