This commit is contained in:
Toni
2016-01-25 15:47:39 +01:00
parent 36056ad002
commit f2e3ab839d
14 changed files with 12070 additions and 0 deletions

View File

@@ -0,0 +1,5 @@
\begin{abstract}
We present an indoor localisation system that integrates different sensor modalities, namely Wi-Fi, barometer, iBeacons, step-detection and turn-detection for localisation of pedestrians within buildings over multiple floors. To model the pedestrian's movement, which is constrained by walls and other obstacles, we propose a state transition based upon random walks on graphs. This model also frees us from the burden of frequently updating the system. In addition we make use of barometer information to estimate the current floor. Furthermore, we present a statistical approach to avoid the incorporation of faulty heading information caused by changing the smartphone's position.
The evaluation of the system within a $\SI{77}{\meter}$ $\times$ $\SI{55}{\meter}$ sized building with 4 floors shows that high accuracy can be achieved while also keeping the update-rates low.
\end{abstract}

View File

@@ -0,0 +1,2 @@
\section{Conclusion}

View File

@@ -0,0 +1,10 @@
\section{Experiments}
\begin{itemize}
\item Nochmal kurz auf die Probleme des letzten Systems eingehen (schon teil der introduction)
\item Da letztes mal nur 1 Pfad, machen wir dieses mal mehrere!
\item Stelle normale Lokalisation der Pfad Lokalisation gegenüber und überlege wo Probleme auftreten
\item nutze den "natürlichen Pfad" und einen normalen dijkstra
\item Analysiere Probleme ggf. mit schönen Grafiken.
\item Vergleich zum Schluss das neue System mit dem Alten um eine schöne Conclusion der Verbesserungen einzuleiten.
\end{itemize}

7
tex/chapters/grid.tex Normal file
View File

@@ -0,0 +1,7 @@
\section{Grid-Based Floorplan}
\subsection{Generation}
\subsection{Weighting}
\subsection{Pathfinding}

View File

@@ -0,0 +1,40 @@
\section{Introduction}
Since the advent of smartphones, location aware apps and services are ubiquitous and have become a natural part of our lives. Whether driving a car, jogging or shopping in the streets, GNSS-based applications are making orientation easier, point the way and even track our fitness achievements. But as soon as we drive into an underground car park or visit a shopping mall, they perform poorly. That is because satellite signals are to weak to pass through obstacles like buildings' walls. Moreover, their accuracy is not sufficient for individual parking spaces or rooms. Therefore, many different solutions for localizing a moving object within buildings have been developed in recent years \cite{}. Especially the hard problem of pedestrian localization and navigation has lately attracted a lot of interest.
Most modern indoor localisation systems primarily use smartphones for determining the position of a pedestrian. Especially the phone's inertial measurement unit (IMU) as well as external information like Wi-Fi or Bluetooth are used for collecting the necessary data. Additionally, environmental knowledge is often incorporated by using floor maps. This combination of highly different sensor types is also known as sensor fusion. Here probabilistic methods like particle filters or Kalman filters or often used to approximate a probability distribution describing the uncertainties of the system. This procedure can be separated into two probabilistic models: The transition model represents the dynamics of the system and predicts the next accessible locations, while the evaluation model estimates a probability that the position also corresponds to the current sensor measurement.
%Therefore, the most accurate position is represented by a peak of the probability distribution.
In our previous work we were able to present such a localisation system based on all the above mentioned sensors including the phone's barometer \cite{Ebner-15}.
In pedestrian navigation, the human movement underlies the characteristics of walking speed and walking direction. Additionally, environmental restrictions need to be considered as well, for example, walking through walls is in most cases impossible. Therefore, incorporating environmental knowledge is a necessary and gainful step. Like other systems, we are using a graph-based approach for this. The main advantage of such an approach is that the graph only samples valid locations. The unique feature of our approach is the way in how we model the human movement. This is done by using random walks on graphs, which are based upon the heading of the pedestrian. However, this suffers from several drawbacks, we want to address within this work.
senkrechte stockwerke, wehcseln schwer blabal.. Therefore, we extend the graph by additional non-discrete nodes which resemble the shape of the stairs.
blumenverteilung, kurven laufen fällt schwer... bessers ziehen.
considering a navigation scenario... we present a novel method for pedestrian navigation by using pathfinding methods. to achieve a preferably realistic path, areas near a wall are less likely to be choosen for the path then a door or a small hallway. ... probability map/graph ... dijkstra doof... deswegen abstände zur wand mit einbeziehen.
\begin{itemize}
\item Hinführen zum Thema 1/4 + Abstract (haben so wenig platz nur 8 seiten...)
\item "In unseren vergangenen Arbeiten konnten wir zeigen ... aber ..."
\item Probleme ganz konkret aufzählen und gleich die lösungen zu den problemen
\subitem diskrete stockwerke, senkrecht
\subitem kurven laufen bereitet große probleme
\subitem lokalisationsergebnisse sind zwar gut, aber vor allem an treppen instabil und räume werden schwer erkannt.
\item Was machen wir jetzt besser / anders. Hinführen zum Thema
\subitem Kontinuierliche Stockwerke
\subitem Bessers ziehen in der Transition
\subitem zusätzliche Gewichtung der Knoten anstatt nur annahme des geradeaus laufens mit geringer chance auf turns.
\subitem Annahme der Navigation
\item Aufbau der Arbeit (falls platz, haben nur 8 Seiten)
\end{itemize}
Since the estabishlement of mobile
\cite{Nurminen14-MMF}

View File

@@ -0,0 +1,12 @@
\section{Related Work}
\begin{itemize}
\item Allgemein indoor localizations systeme
\subitem was ist state of the art?
\subitem klarstellen was wir anders/besser machen
\item graphen-basierte systeme
\subitem probability graph / transition
\item pathfinding
\subitem computerspiele machen das schon ewig. robotor auch.
\subitem auf menschliches verhalten anpassen. gibt es viele theoritsche ansätze und simulationen aber in noch keinem system.
\end{itemize}

7
tex/chapters/system.tex Normal file
View File

@@ -0,0 +1,7 @@
\section{Indoor Localisation System}
\subsection{Overview}
\subsection{Transition}
\subsection{Evaluation}