recent presentation
minor fixes added summary changed theme changed some gfx
This commit is contained in:
@@ -7,7 +7,8 @@
|
||||
|
||||
|
||||
%\usetheme{m}
|
||||
\usetheme[everytitleformat=regular]{m}
|
||||
%\usetheme[everytitleformat=regular]{m}
|
||||
\usetheme[subsectionpage=progressbar]{metropolis}
|
||||
|
||||
% Costumizing the m-theme here
|
||||
\setbeamertemplate{footline}[text line]{%
|
||||
@@ -33,8 +34,8 @@
|
||||
% End Costumizing
|
||||
|
||||
|
||||
|
||||
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{backgrounds}
|
||||
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage{mathptmx}
|
||||
@@ -109,15 +110,33 @@
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
|
||||
%\frame{\tableofcontents[currentsection]}
|
||||
\frame{\tableofcontents}
|
||||
|
||||
%\frametitle{Agenda}
|
||||
%\frame{\tableofcontents}
|
||||
\begin{frame}
|
||||
\frametitle{Agenda}
|
||||
\tableofcontents
|
||||
\end{frame}
|
||||
|
||||
\section{Overview}
|
||||
|
||||
|
||||
% set background
|
||||
\setbeamertemplate{background}{
|
||||
%\begin{tikzpicture}%
|
||||
% %\coordinate (Origin) at (0,0);
|
||||
% %\draw[fill=blue!10] (0,1) circle (1cm);%
|
||||
% %\draw[fill=red!10] (3,1) circle (1cm);%
|
||||
% \begin{scope} \fill[white!80!black] (0.0, 0.0) rectangle (6.5, 8.4); \end{scope}
|
||||
% \begin{scope} \fill[white!60!black] (6.5, 3.8) rectangle (13.0, 0.0); \end{scope}
|
||||
% \begin{scope} \fill[white!80!black] (6.5, 8.4) rectangle (13.0, 3.8); \end{scope}
|
||||
% %\fill[red] (6.5, 4.0) rectangle (13.0, 8.4);
|
||||
%\end{tikzpicture}%
|
||||
\includegraphics[width=12.8cm]{gfx/sysbg.eps}
|
||||
}
|
||||
|
||||
\begin{frame}
|
||||
|
||||
|
||||
\begin{tabular}{lcr}
|
||||
|
||||
% icons: https://thenounproject.com/search/?q=graph
|
||||
@@ -144,6 +163,9 @@
|
||||
|
||||
\end{frame}
|
||||
|
||||
% reset
|
||||
\setbeamertemplate{background}{}
|
||||
|
||||
\section{System}
|
||||
|
||||
\subsection{Recursive Density Estimation}
|
||||
@@ -156,18 +178,18 @@
|
||||
\overbrace{\qTurn \in \R}^{\text{heading}},\enskip{}
|
||||
\overbrace{\qBaro \in \R}^{\text{rel. pressure}}
|
||||
$ \\
|
||||
$\vec{q_0} = $ uniformly distributed
|
||||
$\vec{q}_0 = $ uniformly distributed, $\qBaro = 0$
|
||||
\ispace
|
||||
\item<2-> Observation\\
|
||||
$\vec{o} = (\vec{\oWifi}, \vec{\oBeacons}, \oStep, \oTurn, \oBaro)$
|
||||
\ispace
|
||||
\item<3-> \small$
|
||||
\underbrace{ p(\vec{q_t}\mid \vec{o}_{1:t})}_{\text{estimation}}
|
||||
\underbrace{ p(\vec{q}_t\mid \vec{o}_{1:t})}_{\text{estimation}}
|
||||
\propto %
|
||||
\underbrace{ p(\vec{o_t} \mid \vec{q_t}) }_{\text{evaluation}}%
|
||||
\underbrace{ p(\vec{o}_t \mid \vec{q}_t) }_{\text{evaluation}}%
|
||||
\int
|
||||
\underbrace{ p(\vec{q_t} \mid \vec{q_{t-1}}, \vec{o_{t-1}}) }_{\text{transition}}%
|
||||
\underbrace{ p(\vec{q_{t-1}} \mid \vec{o}_{1:t-1})}_{\text{recursion}}%
|
||||
\underbrace{ p(\vec{q}_t \mid \vec{q}_{t-1}, \vec{o}_{t-1}) }_{\text{transition}}%
|
||||
\underbrace{ p(\vec{q}_{t-1} \mid \vec{o}_{1:t-1})}_{\text{recursion}}%
|
||||
d\vec{q}_{t-1}%
|
||||
$
|
||||
\end{itemize}
|
||||
@@ -230,12 +252,20 @@
|
||||
\frametitle{Observation - Wi-Fi/iBeacons}
|
||||
\begin{itemize}
|
||||
|
||||
\item<1->
|
||||
$p(\vec{o}_t \mid \vec{q}_t)_\text{wifi}=$
|
||||
$p(\vec{\oWifi} \mid \vec{q}_t) = \prod_{\oWifi} \NDist(s_i \mid P_r(d_i, \Delta f_i), \sigma_{\text{wifi}}^2)$,\\
|
||||
\ispace
|
||||
|
||||
\item<2-> 3D signal strength prediction\\\ispace
|
||||
%\only<1>{
|
||||
\item<1->
|
||||
$p(\vec{o}_t \mid \vec{q}_t)_\text{wifi}=$
|
||||
$p(\vec{\oWifi} \mid \vec{q}_t) = \prod_{\oWifi} \NDist(s_i \mid \overbrace{P_r(d_i, \Delta f_i)}^\text{model prediction}, \sigma_{\text{wifi}}^2)$,\\
|
||||
\ispace
|
||||
\only<1>{%
|
||||
\small{\textit{probability to measure all currently received signal-strengths $\vec{\oWifi}$ at a location $\vec{q}_t$, by comparing them with corresponding estimations from a prediction model}}%
|
||||
%\vspace{2.9cm}%
|
||||
}
|
||||
|
||||
%}
|
||||
|
||||
\item<2->
|
||||
3D signal strength prediction\\\ispace
|
||||
$
|
||||
P_r(d,\Delta f) =
|
||||
\underbrace{P_0}_{\text{reference}}\enskip
|
||||
@@ -249,10 +279,15 @@
|
||||
% \underbrace{\lambda \approx -8}_{\text{attenuation per floor}}
|
||||
%$
|
||||
%\ispace
|
||||
\only<3>{ \includegraphics[width = 0.4\textwidth]{gfx/wifi1.png} }%
|
||||
\only<4->{ \includegraphics[width = 0.4\textwidth]{gfx/wifi2.png} }%
|
||||
\only<5>{ \includegraphics[width = 0.4\textwidth]{gfx/wifi3.png} }%
|
||||
\only<6->{ \includegraphics[width = 0.4\textwidth]{gfx/wifi4.png} }%
|
||||
\newline
|
||||
\raisebox{5.0cm}{
|
||||
%\only<2>{ \vspace{4.0cm} }
|
||||
\only<3>{ \includegraphics[width = 0.35\textwidth]{gfx/wifi1.png} }%
|
||||
\only<4->{ \includegraphics[width = 0.35\textwidth]{gfx/wifi2.png} }%
|
||||
\only<5>{ \includegraphics[width = 0.35\textwidth]{gfx/wifi3.png} }%
|
||||
\only<6->{ \includegraphics[width = 0.35\textwidth]{gfx/wifi4.png} }%
|
||||
}
|
||||
%\vspace{6mm}
|
||||
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
@@ -261,14 +296,18 @@
|
||||
\begin{frame}
|
||||
\frametitle{Observation - Barometer}
|
||||
\begin{itemize}
|
||||
\item<1-> $p(\vec{o}_t \mid \vec{q}_t)_{\text{baro}} = $
|
||||
$\NDist(o_t^{\oBaro} \mid q_t^{\qBaro}, \sigma_{\text{baro}}^2)$
|
||||
\ispace
|
||||
\item<2-> each transition performs a relative pressure prediction:\\
|
||||
\ispace
|
||||
$q_t^{\qBaro} = q_{t-1}^{\qBaro} + \Delta z \cdot b$, \enskip
|
||||
$\underbrace{\Delta z = q_{t-1}^z - q_{t}^z}_{\text{height change}}$, \enskip
|
||||
$\underbrace{b \in \R}_{\text{pressure change / meter}}$\\
|
||||
\item<1->
|
||||
$p(\vec{o}_t \mid \vec{q}_t)_{\text{baro}} = $
|
||||
$\NDist(o_t^{\oBaro} \mid q_t^{\qBaro}, \sigma_{\text{baro}}^2)$\\
|
||||
\ispace
|
||||
\small{\textit{probability to measure the pressure $o_t^{\oBaro}$ (relative to the start) at a location $\vec{q}_t$}, by comparing it with the corresponding prediction}
|
||||
|
||||
\item<2->
|
||||
each transition performs a relative pressure prediction:\\
|
||||
\ispace
|
||||
$q_t^{\qBaro} = q_{t-1}^{\qBaro} + \Delta z \cdot b$, \enskip
|
||||
$\underbrace{\Delta z = q_{t-1}^z - q_{t}^z}_{\text{height change}}$, \enskip
|
||||
$\underbrace{b \in \R}_{\text{pressure change / meter}}$\\
|
||||
%
|
||||
\vspace{5mm}
|
||||
\begin{figure}
|
||||
@@ -339,7 +378,7 @@
|
||||
\begin{frame}
|
||||
\frametitle{Transition - Random Walk}
|
||||
\begin{minipage}{0.49\textwidth}
|
||||
$p(\vec{q}_t \mid \vec{q}_{t-1})$:
|
||||
$p(\vec{q}_t \mid \vec{q}_{t-1}, \vec{o}_{t-1})$:
|
||||
\begin{enumerate}
|
||||
\item get node $\vec{q}_{t-1}$ belongs to
|
||||
\item draw distance $\leDistance$ to walk%\\ \textit{depends on the number of detected steps}
|
||||
@@ -501,4 +540,17 @@
|
||||
|
||||
\end{frame}
|
||||
|
||||
\section{Summary}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Summary}
|
||||
\begin{itemize}
|
||||
\item Wi-Fi, iBeacons and a barometer infer the probability for a pedestrian to reside at a location
|
||||
\item step- and turn detection serve as prediction for the pedestrian's movement
|
||||
\item incorporating the building's floorplan by using a graph allows only valid movements
|
||||
\item weighting the graph's nodes allows a realistic shortest-path calculation
|
||||
\item adding prior knowledge like the pedestrian's destination further enhances the movement prediction
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\end{document}
|
||||
|
||||
Reference in New Issue
Block a user