changes by toni
This commit is contained in:
@@ -9,9 +9,9 @@
|
||||
However, due to noisy sensors, more than one reading is required to estimate the relative base.
|
||||
Harnessing the usual setup time of a navigation-system (route calculation, user checking the route, etc.)
|
||||
we use the average of all barometer readings during this timeframe as estimated base $\overline{\mObsPressure}$.
|
||||
Moreover, it is often necessary to omit some initial sensors readings, as the smartphone's sensor needs some time
|
||||
to settle. Besides, we use the setup timeframe to estimate the sensors uncertainty $\sigma_\text{baro}$ for later
|
||||
use within the evaluation. Fig. \ref{fig:baroSetupError} depicts actual sensor-readings including aforementioned
|
||||
Moreover, it is often necessary to omit some initial sensor readings, as the smartphone's sensor needs some time
|
||||
to settle. Besides, we use the setup timeframe to estimate the sensor's uncertainty $\sigma_\text{baro}$ for later
|
||||
use within the evaluation step. Fig. \ref{fig:baroSetupError} depicts actual sensor readings including aforementioned
|
||||
error conditions.
|
||||
%
|
||||
\begin{figure}
|
||||
@@ -31,7 +31,7 @@
|
||||
\Delta z = \mState_{t-1}^{z} - \mState_{t}^z
|
||||
,\enskip
|
||||
b \in \R
|
||||
.
|
||||
\enspace .
|
||||
\label{eq:baroTransition}
|
||||
\end{equation}
|
||||
%
|
||||
@@ -40,7 +40,7 @@
|
||||
one using a normal distribution with the previously estimated $\sigma_\text{baro}$:
|
||||
%
|
||||
\begin{equation}
|
||||
p(\mObsVec_t \mid \mStateVec_t)_\text{baro} = \mathcal{N}(\mObs_t^{\mObsPressure} \mid \mState_t^{\mStatePressure}, \sigma_\text{baro}^2).
|
||||
p(\mObsVec_t \mid \mStateVec_t)_\text{baro} = \mathcal{N}(\mObs_t^{\mObsPressure} \mid \mState_t^{\mStatePressure}, \sigma_\text{baro}^2) \enspace.
|
||||
\label{eq:baroEval}
|
||||
\end{equation}
|
||||
%
|
||||
@@ -55,7 +55,7 @@
|
||||
\docAPshort{} and the number of floors $\Delta f$ between the \docAPshort{} and the state-in-question:
|
||||
%
|
||||
\begin{equation}
|
||||
P_r(d, \Delta f) = \mTXP - 10 \mPLE \log_{10}{\frac{\mMdlDist}{\mMdlDist_0}} + \Delta{f} \mWAF,
|
||||
P_r(d, \Delta f) = \mTXP - 10 \mPLE \log_{10}{\frac{\mMdlDist}{\mMdlDist_0}} + \Delta{f} \mWAF \enspace ,
|
||||
\end{equation}
|
||||
%
|
||||
Assuming statistical independence of all \docAPshort{}s,
|
||||
@@ -63,7 +63,7 @@
|
||||
%
|
||||
\begin{equation}
|
||||
\mProb(\mObsVec_t \mid \mStateVec_t)_\text{wifi} =
|
||||
\prod\limits_{i=1}^{n} \mathcal{N}(\mRssi_\text{wifi}^{i} \mid P_{r}(\mMdlDist_{i}, \Delta{f_{i}}), \sigma_{\text{wifi}}^2).
|
||||
\prod\limits_{i=1}^{n} \mathcal{N}(\mRssi_\text{wifi}^{i} \mid P_{r}(\mMdlDist_{i}, \Delta{f_{i}}), \sigma_{\text{wifi}}^2) \enspace .
|
||||
\label{eq:wifiTotal}
|
||||
\end{equation}
|
||||
%
|
||||
|
||||
Reference in New Issue
Block a user