From b79b3746c0ad890923255a76685f2cdd39245227 Mon Sep 17 00:00:00 2001 From: FrankE Date: Wed, 17 Feb 2016 21:46:01 +0100 Subject: [PATCH] minor changes --- tex/chapters/grid.tex | 18 ++++++++++-------- 1 file changed, 10 insertions(+), 8 deletions(-) diff --git a/tex/chapters/grid.tex b/tex/chapters/grid.tex index e0dc424..dcf7100 100644 --- a/tex/chapters/grid.tex +++ b/tex/chapters/grid.tex @@ -91,17 +91,18 @@ $u,v$, examined by the shortest-path algorithm. To downvote vertices near walls, we need to determine the distance of each vertex from its nearest wall. - We therefore derive an inverted version $G' = (V', E')$ of the graph $G$, just describing walls and other - obstacles. A nearest-neighbour search \cite{Cover1967} within $V'$ provides the vertex $v'$ - nearest to $v$: - \begin{equation} - v' = \fNN{v}{V'} \enskip . - \end{equation} + We therefore derive an inverted version $G' = (V', E')$ of the graph $G$, just describing walls and + obstacles. A nearest-neighbour search \cite{Cover1967} $\fNN{v}{V'}$ within $V'$ provides the vertex + nearest to $v$. + %\begin{equation} + % v' = \fNN{v}{V'} \enskip . + %\end{equation} To get a smooth gradient around walls, the avoidance-factor is derived using a normal distribution with a deviation of \SI{0.5}{\meter}: % \begin{equation} - \fWA{v} = \mathcal{N}( \fDistance{v}{\fNN{v}{V'}} \mid 0.0, 0.5^2) \\ + \fWA{v} = \mathcal{N}( \| v - \fNN{v}{V'} \| \mid 0.0, 0.5^2) + \enskip . \label{eq:wallAvoidance} \end{equation} % @@ -195,10 +196,11 @@ Hereafter, every node in the grid knows the distance and shortest path to the pedestrian's target. To get realistic path suggestions, we use the importance-factors to adjust the edge-weight - $\delta(v_1, v_2)$ for the Dijkstra: + $\delta(e_{1,2})$ for the Dijkstra: % \begin{equation} \begin{split} + \delta(e_{1,2}) = \delta(v_1, v_2) = \frac { \| v_1 - v_2 \| }