chapter 4 almost rewritten

changed gfx
This commit is contained in:
2016-02-17 20:51:31 +01:00
parent bcb84a9138
commit 7bf94c1b81
11 changed files with 662 additions and 263 deletions

View File

@@ -68,19 +68,19 @@
% error development over time while walking along a path
\begin{figure}
\input{gfx/eval/error_timed_nexus}
\caption{Development of the error while walking along
%path 1 (upper) and
path 4 (lower) using the Motorola Nexus 6.
Path 4 shows increasing errors for our methods when leaving the shortest path (3) and when facing multimodalities between two
staircases just before the destination (9).}
\caption{Development of the error while walking along Path 4 using the Motorola Nexus 6.
When leaving the suggested route (3), the error of shortest path \refeq{eq:transShortestPath}
and multipath \refeq{eq:transMultiPath} increases.
The same issues arise when facing multimodalities between two staircases just before the destination (9).}
\label{fig:errorTimedNexus}
\end{figure}
% detailed analysis of path 4
\begin{figure}
\input{gfx/eval/path_nexus_detail}
\caption{Detailed path analysis depicting the individual segments of path 4. Their corresponding error contribution can
be seen in fig. \ref{fig:errorTimedNexus}. Even though the shortest path suggested by the system is ignored multiple
times ($3'$ and $3''$) our approach is still able to improve the overall localisation error.}
\caption{Detailed path analysis depicting the individual segments of path 4 using \refeq{eq:transMultiPath}.
Their corresponding error can be seen in fig. \ref{fig:errorTimedNexus}. Even though the shortest path
suggested by the system is ignored multiple times ($3'$ and $3''$) our approach is still able to improve
the overall localisation error.}
\label{fig:nexusPathDetails}
\end{figure}
%

View File

@@ -7,11 +7,11 @@
To sample only transitions that are actually feasible
within the environment, we utilize a \SI{20}{\centimeter}-gridded graph
$G = (V,E)$, $v_{x,y,z} \in V$, $e_{v_{x,y,z}}^{v_{x',y',z'}} \in E$
$G = (V,E)$ with vertices $v \in V$ and undirected edges $e \in E$
derived from the buildings floorplan as described in section \ref{sec:relatedWork}.
However, we add improved $z$-transitions by also modelling realistic
stairwells using nodes and edges, depicted in fig. \ref{fig:gridStairs}.
%
\begin{figure}
\centering
\input{gfx/grid/grid}
@@ -24,40 +24,45 @@
\end{figure}
%
Stairs are defined using three points $\vec{\spoint}_1, \vec{\spoint}_2, \vec{\spoint}_3 \in \R^3$ whereby the segment
$[ \vec{\spoint}_1 \vec{\spoint}_2 ]$ describes the starting-edge, and $[ \vec{\spoint}_2 \vec{\spoint}_3 ]$ the stair's direction
(see fig. \ref{fig:gridStairs}). The grid-vertices corresponding to the starting-edge are determined using an intersection of
the segment $[ \vec{\spoint}_1 \vec{\spoint}_2 ]$ with the \SI{20}{\centimeter} bounding-box around each vertex.
$[ \vec{\spoint}_1 \vec{\spoint}_2 ]$ describes the starting-edge, and $[ \vec{\spoint}_2 \vec{\spoint}_3 ]$ the stair's
direction (see fig. \ref{fig:gridStairs}). The grid-vertices corresponding to the starting-edge are determined using an
intersection of the segment $[ \vec{\spoint}_1 \vec{\spoint}_2 ]$ with the \SI{20}{\centimeter} bounding-box around each
node's centre $\fPos{v} = (x,y,z)^T$.
To reduce the system's memory footprint, we search for the largest connected region within the graph and
remove all nodes and edges that are not connected to this region.
Walking the grid is now possible by moving along adjacent nodes into a given walking-direction
until a desired distance $\gDist$ is reached \cite{Ebner-15}.
In order to use meaningful headings $\gHead$ and distances $\gDist$
(matching the pedestrian's real heading and walking speed) for each transition,
we use the current sensor-readings $\mObsVec_{t}$ for hinted instead of randomized adjustments:
%
New states $\mStateVec_{t}$ may now be sampled by starting at the vertex for $\fPos{\mStateVec_{t-1}}$ and
walking along adjacent nodes into a given walking-direction $\gHead$ until a distance $\gDist$ is
reached \cite{Ebner-15}.
Both, heading and distance, are supplied by the current sensor readings $\mObsVec_{t}$
and thus reflect the pedestrian's real heading and walking speed including uncertainty.
Working with relative sensor readings, the state's heading is updated during each transition:
%
\begin{align}
\mState_{t}^{\mStateHeading} = \gHead &= \mState_{t-1}^{\mStateHeading} + \mObs_t^{\mObsHeading} + \mathcal{N}(0, \sigma_{\gHead}^2) \\
\gDist &= \mObs_t^{\mObsSteps} \cdot \SI{0.7}{\meter} + \mathcal{N}(0, \sigma_{\gDist}^2)
\gHead &= \mState_{t}^{\mStateHeading} = \mState_{t-1}^{\mStateHeading} + \mObs_t^{\mObsHeading} + \mathcal{N}(0, \sigma_{\gHead}^2) \\
\gDist &= \mObs_t^{\mObsSteps} \cdot \SI{0.7}{\meter} + \mathcal{N}(0, \sigma_{\gDist}^2)
.
\end{align}
%
During a walk, each edge has an assigned probability $p(e)$ which depends on
the its direction $\angle e$ and the current heading $\gHead$.
We will use $p(e)$ to incorporate prior path knowledge to
favour some vertices/edges. For each single movement on the graph,
we calculate $p(e)$ for all adjacent edges, and, hereafter, randomly draw the
to-be-walked edge depending on those probabilities. The random walk ends,
as soon as the distance $d$ is reached. $d$ depends on the number of detected steps
$\mObsVec_t^{\mObsSteps}$ and assumes an average step-size of \SI{0.7}{\meter}.
During the random walk, each edge has its own probability $p(e)$
which e.g. depends on the edge's direction $\angle e$ and the
pedestrian's current heading $\gHead$.
Furthermore, $p(e)$ is used to incorporate prior path knowledge to
favour edges leading towards the pedestrian's desired target.
For comparison purpose we define a simple weighting method that assigns a probability to each edge
just based on the deviation from the currently estimated heading $\gHead$ omitting additional prior knowledge:
\commentByFrank{das erste $=$ ist komisch. ideen?}
\commentByToni{Find ich jetzt nicht tragisch. Eher notwendig fuers Verstaendnis.}
For each single movement on the graph, we calculate $p(e)$ for all edges
connected to a vertex $v$, and, hereafter, randomly draw the to-be-walked edge
depending on those probabilities. This step is repeated until the sum
of the length of all used edges exceeds $d$. The latter depends on the number of
detected steps $\mObs_t^{\mObsSteps}$ and assumes an average
step-size of \SI{0.7}{\meter}.
To quantify the improvement prior knowledge is able to provide,
we define a simple reference for $p(e)$ that assigns a probability to each edge
just based on its deviation from the currently estimated heading $\gHead$:
%
\begin{equation}
p(e) = p(e \mid \gHead) = \mathcal{N} (\angle e \mid \gHead, \sigma_\text{dev}^2).
\label{eq:transSimple}
@@ -79,34 +84,24 @@
\label{sec:wallAvoidance}
As discussed in section \ref{sec:relatedWork}, simply applying a shortest-path algorithm such as Dijkstra or
A* using the previously created graph would obviously lead to non-realistic paths sticking to the walls and
walking many diagonals. Pedestrian's however, walk either somewhere near (but not close to) a wall or, for
larger open spaces, somewhere far from the walls. In order to calculate paths that resemble such a walking
behaviour, an importance-factor is derived for each vertex within the graph. Those will be used to
adjust the distance-weight between two vertices, needed by the shortest-path algorithm.
A* using the previously created graph would obviously lead to non-realistic paths sticking to walls and
walking many diagonals. Pedestrian's however, will probably keep a small gap between themselves and
nearby walls. To calculate paths that resemble this behaviour, an importance-factor is derived for
each vertex. Those will be used to modify the euclidean distance $\fDistance{u}{v}$ between two vertices
$u,v$, examined by the shortest-path algorithm.
To downvote vertices near walls, we need to get the distance of each vertex from its nearest wall.
We therefore build an inverted version $G' = (V', E')$ of the graph $G$, just containing walls and other obstacles.
A nearest-neighbour search \cite{Cover1967}
%$\mNN(v_{x,y,z}, G')$
will then provide the nearest wall-vertex
$v'_{x,y,z} \in V'$ from the inverted graph. To get a smooth gradient, the wall avoidance
is calculated using a normal distribution with the distance from the nearest wall
and a deviation of \SI{0.5}{\meter}:
%
%\begin{equation}
% d_{v, v'} = \| v_{x,y,z}, v'_{x,y,z}, \enskip 0.0 < d_{v, v'} < 2.2 \\
%\end{equation}
%\begin{equation}
%\begin{array}{ll}
% \text{wa}_{x,y,z} = & - 0.30 \cdot \mathcal{N}(d_{v, v'} \mid 0.0, 0.5^2) \\
% & + 0.15 \cdot \mathcal{N}(d_{v, v'} \mid 0.9, 0.5^2) \\
% & + 0.15 \cdot \mathcal{N}(d_{v, v'} \mid 2.2, 0.5^2)
%\end{array}
%\label{eq:wallAvoidance}
%\end{equation}
To downvote vertices near walls, we need to determine the distance of each vertex from its nearest wall.
We therefore derive an inverted version $G' = (V', E')$ of the graph $G$, just describing walls and other
obstacles. A nearest-neighbour search \cite{Cover1967} within $V'$ provides the vertex $v'$
nearest to $v$:
\begin{equation}
\text{wa}_{x,y,z} = \mathcal{N}( \| v_{x,y,z} - v'_{x,y,z} \| \mid 0.0, 0.5^2) \\
v' = \fNN{v}{V'} \enskip .
\end{equation}
To get a smooth gradient around walls, the avoidance-factor
is derived using a normal distribution with a deviation of \SI{0.5}{\meter}:
%
\begin{equation}
\fWA{v} = \mathcal{N}( \fDistance{v}{\fNN{v}{V'}} \mid 0.0, 0.5^2) \\
\label{eq:wallAvoidance}
\end{equation}
%
@@ -114,9 +109,9 @@
%While this approach provides good results for most areas, doors are downvoted by
%\refeq{eq:wallAvoidance}, as they have only vertices that are close to walls.
%Door detection and upvoting thus is the next conducted step.
While effectively rendering wall-regions less likely, \refeq{eq:wallAvoidance}
will obviously have the same effect on all doors located within the building.
Therefore, a door-detection is necessary, to upvote them again.
While rendering wall-regions less likely, \refeq{eq:wallAvoidance}
will obviously have the same effect on doors as they are just a small gap between
consecutive walls. Therefore, a door-detection is necessary, to upvote them again.
@@ -124,90 +119,103 @@
\label{sec:doorDetection}
To automatically detect doors within the floorplan, we utilize the fact that doors are usually
anchored between two (straight) walls and have a normed width. Examining the region directly
around it, the door and its surrounding walls describe a flat ellipse with the door as its
centre.
anchored between two straight walls and have a normed width. Examining the region directly
around it, the door and its surrounding walls thus describe a flat ellipse with the door as its centre.
%It is thus possible to detect doors within the floorplan using a PCA.
To decide whether a vertex $v_{x,y,z}$ within the (non-inverted) grid $G$ belongs to a door,
we use $k$-NN to fetch its $k$ nearest neighbours $\hat{V}$ within the inverted grid $G'$,
describing the walls nearby. Hereafter we determine the centroid $\vec{c} \in \R^3$
and 2D covariance $(x,y)$ for those vertices.
To decide whether a vertex $v$ belongs to a door, we use \mbox{$k$-NN} to fetch its $k$ nearest neighbours
$\{v'_1, v'_2, \dots, v'_k\} \in V'$ within the inverted grid $G'$, denoting nearby walls.
%Hereafter we determine the centroid $\vec{c} \in \R^3$
%and 2D covariance $(x,y)$ for those vertices.
Hereafter we determine their centroid $\vec{c}$ and covariance $\mat{\Sigma}$:
\begin{equation}
\vec{c} = \frac{1}{k}\sum_{i=1}^{k} \fPos{v_i}
,\smallskip
\mat{\Sigma} = \frac{1}{k} \sum_{i=1}^{k} \varphi \cdot \varphi^T
,\smallskip
\varphi = \fPos{v_i}-\vec{c} \enskip.
\end{equation}
%
Using the PCA, we examine the two eigenvalues $\{\lambda_1, \lambda_2 \mid \lambda_1 > \lambda_2\}$,
for the covariance matrix. If their ratio $\frac{\lambda_1}{\lambda_2}$ is above a certain
threshold, the neighbourhood describes a flat ellipse and thus either a straight wall or door.
For $\mat{\Sigma}$, the two largest eigenvalues $\{\lambda_1, \lambda_2 \mid \lambda_1 > \lambda_2\}$
are calculated. If their ratio $^{\lambda_1}/_{\lambda_2}$ is above a certain
threshold, the neighbourhood describes a flat ellipse and thus either a door or a straight wall
%
To prevent a vertex $v_{x,y,z}$ adjacent to such straight walls from also being detected,
we ensure the distance $\| \vec{c} - v_{x,y,z} \|$ between the centroid and the vertex is
below a certain threshold. Hereafter, only vertices located within the door itself remain.
To filter the latter, we enforce the euclidean distance \mbox{$\| \fPos{v} - \vec{c} \|$} between
the centroid and the vertex to be very small. Hereafter, only vertices located directly within a
door itself remain.
%
\begin{figure}
\includegraphics[width=\columnwidth]{door_pca}
\caption{Detect doors within the floorplan using $k$-NN and PCA.
While the white nodes are walkable, the black ones represent walls. The grey node is the one in question.}
\caption{Detect doors within the floorplan using $k$-NN to get the centroid $\vec{c}$ and covariance $\mat{\Sigma}$
of the wall-vertices (black) near $v$. While the left version is fine, the $v$ in the middle is too far
from $\vec{c}$ and the right one has an invalid eigenvalue-ratio.}
\label{fig:doorPCA}
\end{figure}
%
Fig. \ref{fig:doorPCA} depicts all three cases where
(left) the vertex is part of a door,
(middle) the distance between node and centroid is above the threshold and
(right) the ration between $\lambda_1$ and $\lambda_2$ is below the threshold.
(right) the ratio between $\lambda_1$ and $\lambda_2$ is below the threshold.
For smooth importance-gradients around doors, we again use a distribution based on
the distance of a vertex $v_{x,y,z}$ from its nearest door and a deviation
of \SI{1.0}{\meter} to determine its importance-factor:
For smooth gradients around doors, we again use a distribution based on
the distance of a vertex $v$ from its nearest door and a deviation
of \SI{1.0}{\meter}:
%
%\commentByFrank{distanzrechnung: formel ok?}
\begin{equation}
\text{dd}_{x,y,z} = \mathcal{N}( \| \vec{c} - v_{x,y,z} \| \mid 0.0, 1.0^2 )
\fDD{v} = \mathcal{N}( \| \fPos{v} - \vec{c} \| \mid 0.0, 1.0^2 )
\label{eq:doorDetection}
\end{equation}
The final importance for each node is now calculated using \refeq{eq:wallAvoidance}
%
The final importance combines \refeq{eq:wallAvoidance}
and \refeq{eq:doorDetection}:
%
\begin{equation}
\text{imp}_{x,y,z} = 1.0 - \text{wa}_{x,y,z} + \text{dd}_{x,y,z} \enspace .
\fImp{v} = 1.0 - \fWA{v} + \fDD{v} \enspace .
\label{eq:finalImp}
\end{equation}
%
While most vertices receive a factor of $1.0$, wall-regions get lower and
While most nodes receive a neutral factor of $1.0$, wall-regions get lower and
door-regions higher values, depicted in fig. \ref{fig:importance}.
%
\begin{figure}
\includegraphics[width=\columnwidth]{floorplan_importance}
\caption{The calculated importance-factor for each vertex. While the black wall-elements denote
a small importance, the yellow door-regions receive much higher values.}
\caption{The calculated importance-factor \refeq{eq:finalImp} for each vertex.
While the dark wall-elements denote a small importance, the yellow areas around doors and narrow
passages depict a high importance.}
\label{fig:importance}
\end{figure}
\subsection{Path Estimation}
\label{sec:pathEstimation}
\commentByFrank{ueberleitung}
To estimate the shortest path to the pedestrian's desired target, we use a modified version
of Dijkstra's algorithm. Instead of calculating the shortest path from the start to the end,
we swap start/end and do not terminate the calculation until every single node was evaluated.
Thus, every node in the grid knows the shortest path to the pedestrian's target.
For routing the pedestrian towards his desired target, a modified version
of Dijkstra's algorithm is used. Instead of calculating the shortest path from the start to the end,
the direction is inverted and the calculated terminates as soon as every single node was evaluated.
Hereafter, every node in the grid knows the distance and shortest path to the pedestrian's target.
As weighting-function we use
To get realistic path suggestions, we use the importance-factors to adjust the edge-weight
$\delta(v_1, v_2)$ for the Dijkstra:
%
\begin{equation}
\begin{split}
\text{weight}(v_{x,y,z}, v_{x',y',z'}) =
\delta(v_1, v_2) =
\frac
{ \| v_{x,y,z} - v_{x',y',z'} \| }
{ \text{imp}_{x',y',z'} }
.
{ \| v_1 - v_2 \| }
{ \fImp{v_2} }
\enskip.
\end{split}
\label{eq:edgeWeight}
\end{equation}
%
Eq. \eqref{eq:edgeWeight} artificially increases the euclidean distance between $v_1, v_2$ when
$v_2$ approaches a wall and decreases it when encountering a door.
%
%whereby $\text{stretch}(\cdots)$ is a scaling function (linear or non-linear) used to adjust
%the impact of the previously calculated importance-factors.
%
Fig. \ref{fig:multiHeatMap} depicts the difference between the shortest path calculated without (dashed) and
with importance-factors (solid), where the latter version is clearly more realistic.
with importance-factors (solid), where the latter is clearly more realistic.
%\begin{figure}
% \includegraphics[angle=-90, width=\columnwidth, trim=20 19 17 9, clip]{floorplan_paths}
@@ -219,101 +227,89 @@
\subsection{Guidance}
Based on the previous calculations, we propose two approaches to utilize the prior
knowledge within the transition model.
Based on the previous considerations, we propose two approaches to utilize prior
knowledge within the transition.
\subsubsection{Shortest Path}
Before every transition, the centroid $\vec{c}$ of the current sample-set $\Upsilon_{t-1}$,
representing the posterior distribution at time $t-1$, is calculated:
%
\begin{equation}
\vec{c} = \frac
%{ \sum_{\mStateVec_{t-1}} (\mState_{t-1}^x, \mState_{t-1}^y, \mState_{t-1}^z)^T }
{ \sum_{i=1}^N \Upsilon_{t-1}^{x,y,z} }
{N}
\end{equation}
\newcommand{\pathCentroid}{{\vec{\overline{c}}_{t-1}}}
\newcommand{\pathDev}{\sigma_{t-1}}
\newcommand{\pathRef}{\hat{v}}
Before every transition, the centroid $\pathCentroid$ of the current
sample-set, representing the posterior distribution at time $t-1$, is calculated.
%
oder
%
\begin{equation}
\vec{c} = \frac
{ \sum_{i=1}^N \{(\mState_{t-1}^x, \mState_{t-1}^y, \mState_{t-1}^z)^T\}^i }
{N}
\end{equation}
%\commentByFrank{avg-state vom sample-set. frank d. meinte ja hier muessen wir aufpassen. bin noch unschluessig wie.}
%\commentByToni{Das ist gar nicht so einfach... wir haben nie ein Sample Set eingefuehrt. Nicht mal einen Sample. Wir haben immer nur diesen State... Man könnte natuerlich einfach sagen das $\Upsilon_t$ an set of random samples representing the posterior distribution ist oder einfach nur ein set von partikeln. habs mal eingefuegt wie ich denke}
%
oder: the centroid $\vec{c}$ of the current sample-set's 3D positions $\Upsilon_{t-1}^i = \{(\mState_{t-1}^x, \mState_{t-1}^y, \mState_{t-1}^z)^T\}_{i=0}^N$ is calculated:
This centre serves as the starting point for the shortest-path calculation.
As it is not necessarily part of the grid, its nearest-grid-neighbour is determined and used instead.
This vertex is located somewhere within the sample-set and already knows the way to the pedestrian's destination.
%
\begin{equation}
\vec{c} = \frac
%{ \sum_{\mStateVec_{t-1}} (\mState_{t-1}^x, \mState_{t-1}^y, \mState_{t-1}^z)^T }
{ \sum_{i=1}^N \Upsilon_{t-1}^{i} }
{N}
\end{equation}
\newcommand{\pathRef}{v_{\hat{x},\hat{y},\hat{z}}}
\commentByFrank{avg-state vom sample-set. frank d. meinte ja hier muessen wir aufpassen. bin noch unschluessig wie.}
\commentByToni{Das ist gar nicht so einfach... wir haben nie ein Sample Set eingefuehrt. Nicht mal einen Sample. Wir haben immer nur diesen State... Man könnte natuerlich einfach sagen das $\Upsilon_t$ an set of random samples representing the posterior distribution ist oder einfach nur ein set von partikeln. habs mal eingefuegt wie ich denke}
This center is used as starting-point for the shortest path. As it is not necessarily part of
the grid, its nearest-grid-neighbor is determined and used instead.
The resulting vertex already knows its way to the pedestrian's destination, but is located somewhere
within the sample-set. We thus calculate the standard deviation for the distance
of all samples from the centre. After advancing the starting-vertex by three times this deviation
we get a new point that is: part of the shortest path, outside of the sample-set and closer to the
desired destination.
This new reference node $\pathRef$ serves as a comparison base:
\commentByToni{Allgemein mal zur Schreibweise der Vertices. Irgendwie finde ich dieses $v_{x,y,z}$ nicht so gut. Ich denke jeder sieht das wir 3D haben und deswegen könntem man doch schlicht $v$, $v'$, $\hat{v}$ ... nutzen, oder was denkst du?}
\commentByFrank{war der vorschlag von frank d. letztes mal, weil man an vertices nicht einfach attribute (x,y,z) anhaengen kann wie wir es bei $\mObsVec$, $\mStateVec$ haben.}
As new states $\mStateVec_{t}$ should approach the pedestrian's destination
we use a reference $\pathRef$ all states try to reach. This references must
both, part of the shortest path and located somewhere outside of the sample-set.
%
We thus calculate the standard deviation of the distance of all samples from the centre
$\pathCentroid$. After advancing the starting-vertex by three times this deviation
we get a new point $\pathRef$ that is: part of the shortest path, outside of the sample-set
and closer (but not too close) to the desired destination.
%
Hereafter, the simple transition \refeq{eq:transSimple} is combined with a second probability,
downvoting all grid-steps that depart from $\pathRef$.
Finally, \refeq{eq:transShortestPath} provides a metric tending towards the reference while
still allowing the pedestrian to leave the shortest path:
%
\begin{equation}
\begin{split}
p(e) &=
p(v_{x',y',z'} \mid v_{x,y,z})\\
&= \mathcal{N} (\angle [ v_{x,y,z} v_{x',y',z'} ] \mid \gHead, \sigma_\text{dev}^2) \cdot \alpha \\
p(v' \mid v) =
\mathcal{N} (\angle e \mid \gHead, \sigma_\text{dev}^2) \cdot \alpha \\
\alpha &=
\begin{cases}
0.9 & \| v_{x',y',z'} - \pathRef \| < \| v_{x,y,z} - \pathRef \| \\
0.9 & \| v' - \pathRef \| < \| v - \pathRef \| \\
0.1 & \text{else}
\end{cases}
\end{split}
.
\label{eq:transShortestPath}
\end{equation}
%
Eq. \eqref{eq:transShortestPath} combines the simple transition \refeq{eq:transSimple} with
a second probability, downvoting all nodes that are farther away from the reference $\pathRef$
than the previous step. Put another way: grid-steps increasing the distance to the reference
are unlikely but not impossible.
\subsubsection{Multipath}
The shortest-path algorithm mentioned in \ref{sec:pathEstimation} already calculated the
cumulative distance $\text{cdist}_{x,y,z}$ to the pedestrian's target for each vertex.
We thus apply the same assumption as above and downvote grid-steps not decreasing
the distance to the destination:
$\fLength{v}{\dot{v}}$ % = \sum_{i=s}^{e-1} \| v_{i} - v_{i+1} \| $
for the path from $v$ to the pedestrian's destination $\dot{v}$.
We thus apply the same assumption as \refeq{eq:transShortestPath} and downvote edges
not decreasing the distance to the destination:
%
\begin{equation}
\begin{split}
p(e) &=
p(v_{x',y',z'} \mid v_{x,y,z})\\
& = \mathcal{N} (\angle [ v_{x,y,z} v_{x',y',z'} ] \mid \gHead, \sigma_\text{dev}^2) \cdot \alpha \\
p(v' \mid v) =
\mathcal{N} (\angle e \mid \gHead, \sigma_\text{dev}^2) \cdot \alpha \\
\alpha &=
\begin{cases}
0.9 & \text{cdist}_{x',y',z'} < \text{cdist}_{x,y,z} \\
0.9 & \fLength{v'}{\dot{v}} < \fLength{v}{\dot{v}} \\
0.1 & \text{else}
\end{cases}
\end{split}
\label{eq:transMultiPath}
\end{equation}
Fig. \ref{fig:multiHeatMap} shows the heat-map of visited vertices after several \SI{125}{\meter}
walks simulating slight, random heading changes.
%
Fig. \ref{fig:multiHeatMap} shows a heat-map of how often vertices were visited after several
\SI{125}{\meter} walks. The colours from cold to hot indicate that both possible paths
are covered and slight deviations from the shortest version are possible.
%
\begin{figure}
\includegraphics[width=\columnwidth]{floorplan_dijkstra_heatmap}
\caption{Heat-Map of visited vertices after several walks using \refeq{eq:transMultiPath}.
Additionally shows the shortest path calculation without (dashed) and with (solid) importance-factors
\includegraphics[width=\columnwidth, trim=4 8 4 4]{floorplan_dijkstra_heatmap}
\caption{Heat-Map of visited vertices after several walks using \refeq{eq:transMultiPath} with colours
from cold to hot. Both possible paths are covered and slight deviations are possible.
Additionally shows the shortest-path calculation without (dashed) and with (solid) importance-factors
used for edge-weight-adjustment.}
\label{fig:multiHeatMap}
\end{figure}

View File

@@ -1,10 +1,10 @@
%!PS-Adobe-3.0 EPSF-3.0
%%Creator: cairo 1.14.4 (http://cairographics.org)
%%CreationDate: Wed Feb 3 18:26:16 2016
%%CreationDate: Wed Feb 17 20:50:33 2016
%%Pages: 1
%%DocumentData: Clean7Bit
%%LanguageLevel: 2
%%BoundingBox: 3 2 356 37
%%BoundingBox: 0 -1 359 39
%%EndComments
%%BeginProlog
save
@@ -60,53 +60,283 @@ save
/d1 { setcachedevice } bind def
%%EndProlog
%%BeginSetup
%%BeginResource: font LiberationSerif-BoldItalic
11 dict begin
/FontType 42 def
/FontName /LiberationSerif-BoldItalic def
/PaintType 0 def
/FontMatrix [ 1 0 0 1 0 0 ] def
/FontBBox [ 0 0 0 0 ] def
/Encoding 256 array def
0 1 255 { Encoding exch /.notdef put } for
Encoding 99 /c put
/CharStrings 2 dict dup begin
/.notdef 0 def
/c 1 def
end readonly def
/sfnts [
<000100000009008000030010637674205a045c31000001b8000002406670676d73d323b00000
03f800000705676c79667f4da6240000009c0000011c6865616405f2afde00000b0000000036
686865610f5f063300000b3800000024686d74780679006200000b5c000000086c6f6361008e
002c00000b64000000066d6178700422074f00000b6c00000020707265705992daf000000b8c
000004520002004400000264055500030007002eb101002f3cb207041ded32b10605dc3cb203
021ded3200b103002f3cb205041ded32b207061efc3cb201021ded3233112111252111214402
20fe240198fe680555faab4404cd00000001001effec036f03c50027004d40197707011a032a
03020a020111101023200f600f700f800f040fb8ffc04014161c480f291a4705154f4011800a
10221f500016003ffdc63f1acc1aed012fed10d62b5dce33113331305d5d5d05222e0235343e
0233321e02170323272e0123220e0215141e0233323637170e0301875a885a2d619dc7662854
4f441731480e1947323a6c54321b2e40244b7b392c1b4e617214335d804e9ceea051080d1008
fee0ab1c204d8ac0743f5a391a36283f18362e1f0000058d00150051053d000f006f053d054c
000000000000000000000000000003ac001900a20000ffec00000000ffec00000000ffecfee3
fe4cfffa00000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000
000000000800000000000000010a00da00fa0133000000000000005a0064007c009400860133
00000000000000000000000001290137005a007d01000064006e008d01040000000000000000
0000000000000000000000000000010d00fc005a00f2009e0064006e007d00cd005500000000
0000000000000000000000000000000000560109013300f0004c00d500630079007100c50131
013300f000a4014600ad00c00071005501bc014c015a00cd00ee0054014c0066006f008c010e
00000000000000000000000000000000026a012d008f004b010c008f007b0068010c00000000
02ef00c1029d005e02e3000000ae005e006a010a023900ee006a01a200ec018b005a00be00b4
0000000000540048000000000000000000000000ff10ff0100c200fa01060070009000a40000
000000000000054002160546020a00a000b40000000000490052007b008e0000000000000064
00ea01840000000000ea00fcfeee0000000000560068007c000000000748036a02b60202fd93
0000009100670091006101d90000028d034101ce030e030100bafe51fe67056e000000d20088
00d40102019400d8007800e8fe8c02140136009e00e90044051101b440455958555453525150
4f4e4d4c4b4a494847464544434241403f3e3d3c3b3a393837363531302f2e2d2c2827262524
2322211f181411100f0e0d0b0a090807060504030201002c4523466020b02660b00426234848
2d2c452346236120b02661b004262348482d2c45234660b0206120b04660b004262348482d2c
4523462361b0206020b02661b02061b004262348482d2c45234660b0406120b06660b0042623
48482d2c4523462361b0406020b02661b04061b004262348482d2c0110203c003c2d2c204523
20b0cd442320b8015a51582320b08d44235920b0ed51582320b04d44235920b0042651582320
b00d44235921212d2c20204518684420b001602045b04676688a4560442d2c01b10b0a432343
650a2d2c00b10a0b4323430b2d2c00b0282370b101283e01b0282370b10228453ab10200080d
2d2c2045b00325456164b050515845441b2121592d2c49b00e23442d2c2045b0004360442d2c
01b00643b00743650a2d2c2069b04061b0008b20b12cc08a8cb8100062602b0c642364615c58
b00361592d2c8a03458a8a87b0112bb0292344b0297ae4182d2c4565b02c234445b02b23442d
2c4b525845441b2121592d2c4b515845441b2121592d2c01b005251023208af500b0016023ed
ec2d2c01b005251023208af500b0016123edec2d2c01b0062510f500edec2d2c462346608a8a
462320468a608a61b8ff8062232010238ab10c0c8a70456020b0005058b00161b8ffba8b1bb0
468c59b0106068013a2d2c2045b0032546524bb013515b58b0022546206861b00325b003253f
2321381b2111592d2c2045b00325465058b0022546206861b00325b003253f2321381b211159
2d2c00b00743b006430b2d2c21210c6423648bb84000622d2c21b08051580c6423648bb82000
621bb200402f2b59b002602d2c21b0c051580c6423648bb81555621bb200802f2b59b002602d
2c0c6423648bb84000626023212d2c4b53588ab004254964234569b0408b61b08062b020616a
b00e23442310b00ef61b21238a121120392f592d2c4b535820b0032549646920b00526b00625
49642361b08062b020616ab00e2344b0042610b00ef68a10b00e2344b00ef6b00e2344b00eed
1b8ab00426111220392320392f2f592d2c4523456023456023456023766818b08062202d2cb0
482b2d2c2045b0005458b040442045b04061441b2121592d2c45b1302f4523456160b0016069
442d2c4b5158b02f2370b01423421b2121592d2c4b515820b0032545695358441b2121591b21
21592d2c45b01443b0006063b0016069442d2cb02f45442d2c452320458a60442d2c45234560
442d2c4b235158b90033ffe0b134201bb3330034005944442d2cb0164358b00326458a586466
b01f601b64b020606620581b21b04059b001615923586559b02923442310b029e01b21212121
21592d2cb0024354584b53234b515a58381b2121591b21212121592d2cb0164358b004254564
b020606620581b21b04059b0016123581b6559b0292344b00525b00825082058021b0359b004
2510b005252046b0042523423cb00425b0072508b0072510b006252046b00425b0016023423c
2058011b0059b0042510b00525b029e0b02920456544b0072510b00625b029e0b00525b00825
082058021b0359b00525b003254348b00425b0072508b00625b00325b0016043481b21592121
21212121212d2c02b00425202046b004252342b0052508b003254548212121212d2c02b00325
20b0042508b0022543482121212d2c452320451820b00050205823652359236820b040505821
b04059235865598a60442d2c4b53234b515a5820458a60441b2121592d2c4b545820458a6044
1b2121592d2c4b53234b515a58381b2121592d2cb000214b5458381b2121592d2cb002435458
b0462b1b21212121592d2cb002435458b0472b1b212121592d2cb002435458b0482b1b212121
21592d2cb002435458b0492b1b212121592d2c208a08234b538a4b515a5823381b2121592d2c
00b0022549b000535820b04038111b21592d2c014623466023466123201020468a61b8ff8062
8ab140408a704560683a2d2c208a2349648a2353583c1b21592d2c4b52587d1b7a592d2cb012
004b014b54422d2cb1020042b123018851b1400188535a58b910000020885458b20201024360
4259b12401885158b920000040885458b2020202436042b12401885458b2022002436042004b
014b5258b2020802436042591bb940000080885458b202040243604259b94000008063b80100
885458b202080243604259b94000010063b80200885458b202100243604259b94000020063b8
0400885458b202400243604259595959592d2c451868234b51582320452064b04050587c5968
8a6059442d2cb00016b00225b0022501b001233e00b002233eb10102060cb00a236542b00b23
4201b001233f00b002233fb10102060cb006236542b0072342b00116012d2c7a8a104523f518
2d00000000010000000111eb6e6c067c5f0f3cf5001f080000000000cf7aa9c500000000cf7a
a9c5fe93fd93093407d9000300080002000000000000000100000721fe4500570902fe93fe86
09340064001d000000000000000000000000000202ec0044038d001e0000002c008e00000001
0000000201520054006f000500020010002f005a00000359055b00030002bf00500107000100
2f0107000100af0104404601d0fd01bffd0110fd016ffb0140fb01f21ac81ff75f331ff65fff
1ff54eff1ff1f0331f3ff04ff002e7e6331f0fe60100e610e602e5e4ff1fe4ab331fe1e0321f
9fe0afe002b9010a0109400b331fdfdd331fde03331f1f41190109002f010900020000010900
100109003001090060010900d0010900050010010900300109004001090060010900b0010940
3705bfdd010fdd3fdd4fdd7fdd8fddafddbfddcfddffdd09dc03331fd7d61f1fd55fff1fd4d4
ff1fc9c8ff1fc8c3fe1fc5c4ff1fd1d0331fb8ffc0406fd0090c4640c001c1472b1fbc47ff1f
be472b1fafbdbfbd02bfbdcfbd025fbd6fbd7fbdafbd0440bd090c46ba5fff1fb9adff1f0fb7
3fb702b64eff1f7fb5afb5022fb33fb3bfb3030fb33fb35fb3efb30490b001a0b001b0b0c0b0
02afad1f1faead341f90ac01a0ac01b0acc0ac02b8010eb203181fb8010d401f1bff1fa0a9b0
a902a99b331f9d5fff1f9c5fff1f309b409b02d09b010f9b01b8011ab2961c1fb80113402099
331f9f47ff1f3f99010098109820980360980197961c1f3096409602d09601b8010cb31bff1f
60410d0115000100800114000100400114005001140060011400e0011440290494931f1f7092
8092909203918f331f908c331f8e85ff1f8d84ff1f2f8c015f8c010f8c1f8c7f8c03b8010b40
0a8b331f308a408a508a03b8ffc0400c891a1e468882331f8682ff1fb8ffc0404d84090c4677
4e3c1f00761076a0760360767076807603755f201f7460ff1f735fff1f6f727f72029f72af72
0271471e1f6f6e341f6e47321f001a101a021a01185519331855073303550603ff1fb9ffc001
1bb2141c46b80117b262341fb80116b35f341f00410a0110001001100020011000a001100004
ffc00110b20f1346b8ffc0409362143446615f341f605f341f5f4f1f1f0f5e1f5e2f5e9f5eaf
5e055b5a2b1f605ad05a020f5a1f5a02140112551333125505010355043303550f032f033f03
5f037f03af0306005310538053038051016f4e7f4e8f4e03804a014a470a1f4947331f4f485f
48020f471f47020f471f472f479f47af47051d011b551c481b551633155511010f5510330f55
0201005501330055b8011840191b331f2f0fff0f020f0f5f0f7f0f030f003f00028016010501
b80190b154532b2b4bb807ff524bb007505bb00188b02553b00188b040515ab00688b000555a
5b58b101018e59858d8d00421d4bb0325358b0601d594bb0645358b0401d594bb0805358b010
1db1160042597373742b2b2b2b2b2b2b2b017374732b2b7300747573732b2b2b2b0173742b73
002b2b2b2b2b742b2b2b2b2b2b2b73012b2b2b7374002b2b2b73742b012b2b2b2b742b007374
752b2b2b2b732b7374732b0173742b7374732b2b2b007373742b2b2b752b2b01737475002b2b
73747573740173002b732b2b2b737475012b2b002b0173002b2b012b002b2b012b002b2b2b73
747374752b2b2b01732b002b2b74752b01732b002b2b2b2b73737373730173737318000000>
] def
/f-0-0 currentdict end definefont pop
%%EndResource
%%BeginResource: font LiberationSerif-Italic
11 dict begin
/FontType 42 def
/FontName /LiberationSerif-Italic def
/PaintType 0 def
/FontMatrix [ 1 0 0 1 0 0 ] def
/FontBBox [ 0 0 0 0 ] def
/Encoding 256 array def
0 1 255 { Encoding exch /.notdef put } for
Encoding 118 /v put
/CharStrings 2 dict dup begin
/.notdef 0 def
/v 1 def
end readonly def
/sfnts [
<00010000000900800003001063767420516347b6000001d0000002406670676d73d323b00000
041000000705676c79660817154b0000009c00000134686561640574afde00000b1800000036
686865610ee205ae00000b5000000024686d74780679006000000b74000000086c6f6361009a
002c00000b7c000000066d617870049a069d00000b840000002070726570c8e9076c00000ba4
000003e40002004400000264055500030007002eb101002f3cb20704e6ed32b10605dc3cb203
02e6ed3200b103002f3cb20504e6ed32b207061efc3cb20102e6ed3233112111252111214402
20fe240198fe680555faab4404cd00000001001cffec038d03ac0015008b405e061201090f01
290f010f100152141514471110141111105415011515110baf03cf03020303173f175f177f17
03d411e41102bb11cb1102af11019b110100111011021114114f07130f401550150214152415
341503801501741501151016003f335d5d71713f33ed33012f5d5d5d5d5d5d11332f5dcd1139
192f5d8718102b872bc401325d31305d5d013e013534262737331e0115140607012303273721
1302af231d2a1808be09112033fe5949bd71090100910266396226252c072d082215206b51fd
5b037a192dfd2400058d00150000053d000f006f053d054c0000000000000000000000000000
03ac001900000000ffec00000000ffec00000000ffecfee3fe4cfffa00000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000080000000000000000a6
00af009300d900c6000000000000004600500069007d00d900000000000000000000000000c1
00c800af007700500050005a00aa000000000000000000000000000000000000000000000000
00ac00b8005a0000000000500060008200990000000000000000000000000000000000000000
000000cb003700d70050009b00b4000000000000000000c9007b006d008d00d9005000460058
0132014600f200b2006a00da00c500f2004d000000000000ffe3009c00d4020e00fe00000000
0000053d0000006600000000006600c002db0000000000000000009802a0004a02e400000099
00660050000000000042004201a8009c019f0046008e0000000000000046003c000000000000
00000000000000000000007d008900000052006800760087000000000000054202170552020a
007e008e006c0000003a0056004400670070030e0301000000a9017f018b000000b000a50000
000000000056002efe4cfeee00000748036a02b60202fd930000009100670091006101d90000
028d034100000000022fff10009c00c40030ff00fe67fe5801c901d60082004600e8017200b4
006e008dfe9c006a01aa051101b4404559585554535251504f4e4d4c4b4a4948474645444342
41403f3e3d3c3b3a393837363531302f2e2d2c28272625242322211f181411100f0e0d0b0a09
0807060504030201002c4523466020b02660b004262348482d2c452346236120b02661b00426
2348482d2c45234660b0206120b04660b004262348482d2c4523462361b0206020b02661b020
61b004262348482d2c45234660b0406120b06660b004262348482d2c4523462361b0406020b0
2661b04061b004262348482d2c0110203c003c2d2c20452320b0cd442320b8015a51582320b0
8d44235920b0ed51582320b04d44235920b0042651582320b00d44235921212d2c2020451868
4420b001602045b04676688a4560442d2c01b10b0a432343650a2d2c00b10a0b4323430b2d2c
00b0282370b101283e01b0282370b10228453ab10200080d2d2c2045b00325456164b0505158
45441b2121592d2c49b00e23442d2c2045b0004360442d2c01b00643b00743650a2d2c2069b0
4061b0008b20b12cc08a8cb8100062602b0c642364615c58b00361592d2c8a03458a8a87b011
2bb0292344b0297ae4182d2c4565b02c234445b02b23442d2c4b525845441b2121592d2c4b51
5845441b2121592d2c01b005251023208af500b0016023edec2d2c01b005251023208af500b0
016123edec2d2c01b0062510f500edec2d2c462346608a8a462320468a608a61b8ff80622320
10238ab10c0c8a70456020b0005058b00161b8ffba8b1bb0468c59b0106068013a2d2c2045b0
032546524bb013515b58b0022546206861b00325b003253f2321381b2111592d2c2045b00325
465058b0022546206861b00325b003253f2321381b2111592d2c00b00743b006430b2d2c2121
0c6423648bb84000622d2c21b08051580c6423648bb82000621bb200402f2b59b002602d2c21
b0c051580c6423648bb81555621bb200802f2b59b002602d2c0c6423648bb84000626023212d
2c4b53588ab004254964234569b0408b61b08062b020616ab00e23442310b00ef61b21238a12
1120392f592d2c4b535820b0032549646920b00526b0062549642361b08062b020616ab00e23
44b0042610b00ef68a10b00e2344b00ef6b00e2344b00eed1b8ab00426111220392320392f2f
592d2c4523456023456023456023766818b08062202d2cb0482b2d2c2045b0005458b0404420
45b04061441b2121592d2c45b1302f4523456160b0016069442d2c4b5158b02f2370b0142342
1b2121592d2c4b515820b0032545695358441b2121591b2121592d2c45b01443b0006063b001
6069442d2cb02f45442d2c452320458a60442d2c45234560442d2c4b235158b90033ffe0b134
201bb3330034005944442d2cb0164358b00326458a586466b01f601b64b020606620581b21b0
4059b001615923586559b02923442310b029e01b2121212121592d2cb0024354584b53234b51
5a58381b2121591b21212121592d2cb0164358b004254564b020606620581b21b04059b00161
23581b6559b0292344b00525b00825082058021b0359b0042510b005252046b0042523423cb0
0425b0072508b0072510b006252046b00425b0016023423c2058011b0059b0042510b00525b0
29e0b02920456544b0072510b00625b029e0b00525b00825082058021b0359b00525b0032543
48b00425b0072508b00625b00325b0016043481b2159212121212121212d2c02b00425202046
b004252342b0052508b003254548212121212d2c02b0032520b0042508b0022543482121212d
2c452320451820b00050205823652359236820b040505821b04059235865598a60442d2c4b53
234b515a5820458a60441b2121592d2c4b545820458a60441b2121592d2c4b53234b515a5838
1b2121592d2cb000214b5458381b2121592d2cb002435458b0462b1b21212121592d2cb00243
5458b0472b1b212121592d2cb002435458b0482b1b21212121592d2cb002435458b0492b1b21
2121592d2c208a08234b538a4b515a5823381b2121592d2c00b0022549b000535820b0403811
1b21592d2c014623466023466123201020468a61b8ff80628ab140408a704560683a2d2c208a
2349648a2353583c1b21592d2c4b52587d1b7a592d2cb012004b014b54422d2cb1020042b123
018851b1400188535a58b910000020885458b202010243604259b12401885158b92000004088
5458b2020202436042b12401885458b2022002436042004b014b5258b2020802436042591bb9
40000080885458b202040243604259b94000008063b80100885458b202080243604259b94000
010063b80200885458b202100243604259b94000020063b80400885458b20240024360425959
5959592d2c451868234b51582320452064b04050587c59688a6059442d2cb00016b00225b002
2501b001233e00b002233eb10102060cb00a236542b00b234201b001233f00b002233fb10102
060cb006236542b0072342b00116012d2c7a8a104523f5182d00000000010000000111eb905c
fa345f0f3cf5001f080000000000cf7aa9c500000000cf7aa9c5fe96fd9308b407d900020008
0002000000000000000100000721fe450057086bfe96fe9808b40064001d0000000000000000
00000000000202ec0044038d001c0000002c009a000000010000000201520054007900050002
0010002f005a000003d1049f00030002bf005001070001002f0107000100af0104401101d0fd
01bffd0110fd016ffb0140fb01f8b8010f4012291ff71bff1ff650281ff5503c1ff1f03c1fb9
0113011240843c1feeed3c1fec47ff1fe850291fe750291fe6e43c1fe550351fe450351fe1b4
331fe0b41a1feae9331fdfdd331fde03331f2fe95fe97fe9afe9040fe95fe9afe9ffe9040900
dd013c2fdd3fdd7fddbfdd042fdd3fdd4fddafddbfddcfddffdd070fdd01dc03331fd8501c1f
d7501c1fd6501c1fd550ff1fc9c83d1fc84f3c1fc34f291fb9010b010f4012291f2fc2013fc2
8fc202c1a1ff1fbf50291fb8010db247121fb8010cb7a1ff1fbe5e291f0fb8010a400901bbad
341fbaadff1fb8ffc04033b9242846b950241f3fb701b650291fbfb4010faf5faf6faf9faf04
70ae80ae90ae0320ae30ae40aed0aee0aef0ae06ad50291fbc0111003d011000550110b21b3c
1fb8010e402e2903550fa3012fa2018fa201ffa20160a270a280a203a912ff1fa803ff1fa033
12559c50291f9b533c1fa44a3c1fb8ffc04015a12124469fa1afa1029a47121f994aff1f964a
3c1fbc011d01170029001f0118b353291f3fba0117004f0117404a0295943c1f0f947f940209
93503d1f92503d1f9150ff1f908c3d1f8f8d291f8e8d3d1f008d013b0f8d018c533c1f878229
1f84823c1f708280820276753c1ff0750174732a1f7350291fb80115401b70291f6f6e2b1f6e
472a1f1a0b1b5519331855073303550603ff1fbc011a01140029001f0119b35f331f40b80114
b2242746b8ffc0b3612b3046b8ffc0400c611f2346605f401f5f50291fb8ffc0409a5d1a1e46
5c47201f5b5a301f5a47291f140112551333125505010355043303550f032f033f035f037f03
af03066053705380530352512f1f5150291fe050f050020f4f1f4f2f4f034b47331f4a47121f
49473c1f4847381f0f471f472f47cf47df47ef47069f47011d011b551c481b55163315551101
0f5510330f5502010055013300552f0fff0f020f0f5f0f7f0f030f003f00028016010501b801
90b154532b2b4bb807ff524bb009505bb00188b02553b00188b040515ab00688b000555a5b58
b101018e59858d8d00421d4bb0325358b0601d594bb0645358b0401d594bb0805358b0101db1
160042597373742b2b2b2b2b2b2b0173752b2b2b2b0075742b2b73732b2b2b2b012b2b2b2b00
2b2b2b2b2b2b2b2b2b2b2b012b2b2b002b2b742b01732b2b002b755e732b2b2b2b2b2b5e732b
732b2b012b2b2b732b2b002b2b2b2b2b73737475732b2b2b2b7475730173002b732b2b2b2b73
012b2b2b002b2b73742b012b002b2b2b2b2b2b2b7373745e735e73742b2b2b012b2b002b2b2b
2b2b012b002b2b012b002b2b2b2b7373737373017373731800>
] def
/f-1-0 currentdict end definefont pop
%%EndResource
%%EndSetup
%%Page: 1 1
%%BeginPageSetup
%%PageBoundingBox: 3 2 356 37
%%PageBoundingBox: 0 -1 359 39
%%EndPageSetup
q 3 2 353 35 rectclip q
1 0.501961 0.501961 rg
281.602 19.201 m 281.602 10.365 273.004 3.201 262.398 3.201 c 251.797 3.201
243.199 10.365 243.199 19.201 c 243.199 28.037 251.797 35.201 262.398 35.201
c 273.004 35.201 281.602 28.037 281.602 19.201 c h
281.602 19.201 m f
q 0 -1 359 40 rectclip q
0.501961 g
0 0.002 m 12.801 0.002 l 12.801 12.798 l 38.398 12.798 l 38.398 25.599
l 12.801 25.599 l 12.801 38.4 l 0 38.4 l h
0 0.002 m f*
89.602 25.599 25.598 -12.801 re f*
121.602 38.4 m 121.602 0.002 l 134.398 0.002 l 134.398 12.798 l 160 12.798
l 160 25.599 l 134.398 25.599 l 134.398 38.4 l h
121.602 38.4 m f*
211.199 25.599 25.602 -12.801 re f*
243.199 38.4 m 243.199 0.002 l 256 0.002 l 256 12.798 l 281.602 12.798
l 281.602 25.599 l 256 25.599 l 256 38.4 l h
243.199 38.4 m f*
332.801 25.599 25.598 -12.801 re f*
0 g
0.8 w
0 J
0 j
[ 0.8 0.8] 0 d
4 M q 1 0 0 -1 0 38.400002 cm
281.602 19.199 m 281.602 28.035 273.004 35.199 262.398 35.199 c 251.797
35.199 243.199 28.035 243.199 19.199 c 243.199 10.363 251.797 3.199 262.398
3.199 c 273.004 3.199 281.602 10.363 281.602 19.199 c h
281.602 19.199 m S Q
0.501961 1 0.501961 rg
115.199 19.201 m 115.199 15.666 92.277 12.798 64 12.798 c 35.723 12.798
12.801 15.666 12.801 19.201 c 12.801 22.736 35.723 25.599 64 25.599 c 92.277
25.599 115.199 22.736 115.199 19.201 c h
115.199 19.201 m f
0 g
[ 0.8 0.8] 0 d
q 1 0 0 -1 0 38.400002 cm
115.199 19.199 m 115.199 22.734 92.277 25.602 64 25.602 c 35.723 25.602
12.801 22.734 12.801 19.199 c 12.801 15.664 35.723 12.801 64 12.801 c 92.277
12.801 115.199 15.664 115.199 19.199 c h
115.199 19.199 m S Q
1 0.501961 0.501961 rg
236.801 19.201 m 236.801 15.666 216.742 12.798 192 12.798 c 167.258 12.798
147.199 15.666 147.199 19.201 c 147.199 22.736 167.258 25.599 192 25.599
c 216.742 25.599 236.801 22.736 236.801 19.201 c h
236.801 19.201 m f
0 g
[ 0.8 0.8] 0 d
q 1 0 0 -1 0 38.400002 cm
236.801 19.199 m 236.801 22.734 216.742 25.602 192 25.602 c 167.258 25.602
147.199 22.734 147.199 19.199 c 147.199 15.664 167.258 12.801 192 12.801
c 216.742 12.801 236.801 15.664 236.801 19.199 c h
236.801 19.199 m S Q
0.501961 g
[] 0.0 d
4 M q 1 0 0 -1 0 38.400002 cm
118.398 0 m 118.398 38.398 l S Q
q 1 0 0 -1 0 38.400002 cm
240 0 m 240 38.398 l S Q
0.501961 g
q 1 0 0 -1 0 38.400002 cm
48 19.199 m 48 20.969 46.566 22.398 44.801 22.398 c 43.031 22.398 41.602
20.969 41.602 19.199 c 41.602 17.434 43.031 16 44.801 16 c 46.566 16 48
@@ -251,14 +481,17 @@ q 1 0 0 -1 0 38.400002 cm
30.232 3.199 32.002 c 3.199 33.767 4.633 35.201 6.398 35.201 c 8.168 35.201
9.602 33.767 9.602 32.002 c h
9.602 32.002 m f
0 0 1 rg
q 1 0 0 -1 0 38.400002 cm
64 19.199 m 64 12.801 l S Q
q 1 0 0 -1 0 38.400002 cm
64 19.199 m 12.801 19.199 l S Q
0 0 0.752941 rg
[ 0.8 0.8] 0 d
q 1 0 0 -1 0 38.400002 cm
64 19.199 m 70.398 6.398 l S Q
0.501961 g
[] 0.0 d
q 1 0 0 -1 0 38.400002 cm
169.602 19.199 m 169.602 20.969 168.168 22.398 166.398 22.398 c 164.633
22.398 163.199 20.969 163.199 19.199 c 163.199 17.434 164.633 16 166.398
@@ -391,14 +624,17 @@ q 1 0 0 -1 0 38.400002 cm
227.199 8.168 227.199 6.398 c 227.199 4.633 228.633 3.199 230.398 3.199
c 232.168 3.199 233.602 4.633 233.602 6.398 c h
233.602 6.398 m S Q
0 0 1 rg
q 1 0 0 -1 0 38.400002 cm
192 19.199 m 192 12.801 l S Q
q 1 0 0 -1 0 38.400002 cm
192 19.199 m 147.199 19.199 l S Q
0 0 0.752941 rg
[ 0.8 0.8] 0 d
q 1 0 0 -1 0 38.400002 cm
192 19.199 m 230.398 6.398 l S Q
0.501961 g
[] 0.0 d
q 1 0 0 -1 0 38.400002 cm
291.199 19.199 m 291.199 20.969 289.766 22.398 288 22.398 c 286.234 22.398
284.801 20.969 284.801 19.199 c 284.801 17.434 286.234 16 288 16 c 289.766
@@ -537,14 +773,52 @@ q 1 0 0 -1 0 38.400002 cm
8.168 284.801 6.398 c 284.801 4.633 286.234 3.199 288 3.199 c 289.766 3.199
291.199 4.633 291.199 6.398 c h
291.199 6.398 m S Q
0 g
0 0 1 rg
q 1 0 0 -1 0 38.400002 cm
262.398 19.199 m 243.199 19.199 l S Q
q 1 0 0 -1 0 38.400002 cm
262.398 19.199 m 262.398 3.199 l S Q
0 0 0.752941 rg
[ 0.8 0.8] 0 d
q 1 0 0 -1 0 38.400002 cm
262.398 19.199 m 275.199 6.398 l S Q
1 0 0 rg
2.4 w
[] 0.0 d
q 1 0 0 -1 0 38.400002 cm
281.602 19.199 m 281.602 28.035 273.004 35.199 262.398 35.199 c 251.797
35.199 243.199 28.035 243.199 19.199 c 243.199 10.363 251.797 3.199 262.398
3.199 c 273.004 3.199 281.602 10.363 281.602 19.199 c h
281.602 19.199 m S Q
0 0.768627 0 rg
q 1 0 0 -1 0 38.400002 cm
115.199 19.199 m 115.199 22.734 92.277 25.602 64 25.602 c 35.723 25.602
12.801 22.734 12.801 19.199 c 12.801 15.664 35.723 12.801 64 12.801 c 92.277
12.801 115.199 15.664 115.199 19.199 c h
115.199 19.199 m S Q
1 0 0 rg
q 1 0 0 -1 0 38.400002 cm
236.801 19.199 m 236.801 22.734 216.742 25.602 192 25.602 c 167.258 25.602
147.199 22.734 147.199 19.199 c 147.199 15.664 167.258 12.801 192 12.801
c 216.742 12.801 236.801 15.664 236.801 19.199 c h
236.801 19.199 m S Q
0 g
BT
8 0 0 8 260.60459 11.289333 Tm
/f-0-0 1 Tf
(c)Tj
-24.839723 0.312057 Td
(c)Tj
16.477159 0.142513 Td
(c)Tj
/f-1-0 1 Tf
-16.332804 2.339562 Td
(v)Tj
20.127616 0.00947022 Td
(v)Tj
6.908234 -0.0220971 Td
(v)Tj
ET
Q Q
showpage
%%Trailer

View File

@@ -206,11 +206,11 @@
borderopacity="1.0"
inkscape:pageopacity="0.0"
inkscape:pageshadow="2"
inkscape:zoom="1.979899"
inkscape:cx="232.59995"
inkscape:cy="65.182272"
inkscape:zoom="2.8284271"
inkscape:cx="265.88479"
inkscape:cy="23.442037"
inkscape:document-units="px"
inkscape:current-layer="layer4"
inkscape:current-layer="layer5"
showgrid="true"
units="px"
inkscape:window-width="1600"
@@ -241,30 +241,48 @@
</metadata>
<g
inkscape:groupmode="layer"
id="layer5"
inkscape:label="ellipse2"
transform="translate(0,-132)">
<ellipse
style="fill:#ff8080;fill-opacity:1;stroke:#000000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:1, 1;stroke-dashoffset:0;stroke-opacity:1"
id="path4385-3"
cx="328"
cy="156"
rx="24"
ry="20" />
<ellipse
style="fill:#80ff80;fill-opacity:1;stroke:#000000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:1, 1;stroke-dashoffset:0;stroke-opacity:1"
id="path4385"
cx="80"
cy="156"
rx="64"
ry="8" />
<ellipse
style="fill:#ff8080;fill-opacity:1;stroke:#000000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:1, 1;stroke-dashoffset:0;stroke-opacity:1"
id="path4385-7"
cx="240"
cy="156"
rx="56"
ry="8" />
id="layer7"
inkscape:label="lines">
<path
style="fill:#808080;fill-rule:evenodd;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;fill-opacity:1"
d="M 0,48 16,48 16,32 48,32 48,16 16,16 16,0 0,0 Z"
id="path4358"
inkscape:connector-curvature="0" />
<path
style="fill:#808080;fill-rule:evenodd;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;fill-opacity:1"
d="m 112,16 0,16 32,0 0,-16 z"
id="path4360"
inkscape:connector-curvature="0" />
<path
style="fill:#808080;fill-rule:evenodd;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;fill-opacity:1"
d="m 152,0 0,48 16,0 0,-16 32,0 0,-16 -32,0 0,-16 -16,0 z"
id="path4362"
inkscape:connector-curvature="0" />
<path
style="fill:#808080;fill-rule:evenodd;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;fill-opacity:1"
d="m 264,16 0,16 32,0 0,-16 -32,0 z"
id="path4364"
inkscape:connector-curvature="0" />
<path
style="fill:#808080;fill-rule:evenodd;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;fill-opacity:1"
d="m 304,0 0,48 16,0 0,-16 32,0 0,-16 -32,0 0,-16 z"
id="path4366"
inkscape:connector-curvature="0" />
<path
style="fill:#808080;fill-rule:evenodd;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;fill-opacity:1"
d="m 416,16 0,16 32,0 0,-16 -32,0 0,0 z"
id="path4368"
inkscape:connector-curvature="0" />
<path
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
d="m 148,0 0,48"
id="path4370"
inkscape:connector-curvature="0" />
<path
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
d="m 300,0 0,48"
id="path4372"
inkscape:connector-curvature="0" />
</g>
<g
inkscape:label="Layer 1"
@@ -460,19 +478,19 @@
inkscape:label="ellipse"
transform="translate(0,-96)">
<path
style="display:inline;fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
style="display:inline;fill:none;fill-rule:evenodd;stroke:#0000ff;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
d="m 80,120 0,-8"
id="path4387"
inkscape:connector-curvature="0"
sodipodi:nodetypes="cc" />
<path
style="display:inline;fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
style="display:inline;fill:none;fill-rule:evenodd;stroke:#0000ff;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
d="m 80,120 -64,0"
id="path4389"
inkscape:connector-curvature="0"
sodipodi:nodetypes="cc" />
<path
style="fill:none;fill-rule:evenodd;stroke:#0000c0;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
style="fill:none;fill-rule:evenodd;stroke:#0000c0;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:1,1;stroke-dashoffset:0"
d="m 80,120 8,-16"
id="path5147"
inkscape:connector-curvature="0"
@@ -634,19 +652,19 @@
cy="104"
r="4" />
<path
style="display:inline;fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
style="display:inline;fill:none;fill-rule:evenodd;stroke:#0000ff;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
d="m 240,120 0,-8"
id="path4387-4"
inkscape:connector-curvature="0"
sodipodi:nodetypes="cc" />
<path
style="display:inline;fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
style="display:inline;fill:none;fill-rule:evenodd;stroke:#0000ff;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
d="m 240,120 -56,0"
id="path4389-2"
inkscape:connector-curvature="0"
sodipodi:nodetypes="cc" />
<path
style="fill:none;fill-rule:evenodd;stroke:#0000c0;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
style="fill:none;fill-rule:evenodd;stroke:#0000c0;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:1,1;stroke-dashoffset:0"
d="m 240,120 48,-16"
id="path5371"
inkscape:connector-curvature="0"
@@ -814,21 +832,125 @@
cy="104"
r="4" />
<path
style="display:inline;fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
style="display:inline;fill:none;fill-rule:evenodd;stroke:#0000ff;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
d="m 328,120 -24,0"
id="path4389-7"
inkscape:connector-curvature="0"
sodipodi:nodetypes="cc" />
<path
style="display:inline;fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
style="display:inline;fill:none;fill-rule:evenodd;stroke:#0000ff;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
d="m 328,120 0,-20"
id="path4387-5"
inkscape:connector-curvature="0"
sodipodi:nodetypes="cc" />
<path
style="fill:none;fill-rule:evenodd;stroke:#0000c0;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
style="fill:none;fill-rule:evenodd;stroke:#0000c0;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:1,1;stroke-dashoffset:0"
d="m 328,120 16,-16"
id="path6160"
inkscape:connector-curvature="0" />
</g>
<g
inkscape:groupmode="layer"
id="layer5"
inkscape:label="ellipse2"
transform="translate(0,-132)">
<ellipse
style="fill:none;fill-opacity:1;stroke:#ff0000;stroke-width:3;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
id="path4385-3"
cx="328"
cy="156"
rx="24"
ry="20" />
<ellipse
style="fill:none;fill-opacity:1;stroke:#00c400;stroke-width:3;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
id="path4385"
cx="80"
cy="156"
rx="64"
ry="8" />
<ellipse
style="fill:none;fill-opacity:1;stroke:#ff0000;stroke-width:3;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
id="path4385-7"
cx="240"
cy="156"
rx="56"
ry="8" />
<text
xml:space="preserve"
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
x="325.75574"
y="165.88834"
id="text4264-7-1"
sodipodi:linespacing="125%"><tspan
sodipodi:role="line"
id="tspan4266-7-3"
x="325.75574"
y="165.88834"
style="font-style:italic;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:10px;font-family:'Liberation Serif';-inkscape-font-specification:'Liberation Serif Bold Italic'">c</tspan></text>
</g>
<g
inkscape:groupmode="layer"
id="layer6"
inkscape:label="txt">
<text
xml:space="preserve"
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
x="77.358505"
y="30.767767"
id="text4264"
sodipodi:linespacing="125%"><tspan
sodipodi:role="line"
id="tspan4266"
x="77.358505"
y="30.767767"
style="font-size:10px;-inkscape-font-specification:'Liberation Serif Bold Italic';font-family:'Liberation Serif';font-weight:bold;font-style:italic;font-stretch:normal;font-variant:normal">c</tspan></text>
<text
xml:space="preserve"
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
x="242.1301"
y="29.342638"
id="text4264-7"
sodipodi:linespacing="125%"><tspan
sodipodi:role="line"
id="tspan4266-7"
x="242.1301"
y="29.342638"
style="font-style:italic;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:10px;font-family:'Liberation Serif';-inkscape-font-specification:'Liberation Serif Bold Italic'">c</tspan></text>
<text
xml:space="preserve"
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
x="78.802055"
y="5.947021"
id="text4264-7-9"
sodipodi:linespacing="125%"><tspan
sodipodi:role="line"
id="tspan4266-7-6"
x="78.802055"
y="5.947021"
style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:10px;font-family:'Liberation Serif';-inkscape-font-specification:'Liberation Serif Italic'">v</tspan></text>
<text
xml:space="preserve"
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
x="280.07822"
y="5.8523188"
id="text4264-7-9-6"
sodipodi:linespacing="125%"><tspan
sodipodi:role="line"
id="tspan4266-7-6-7"
x="280.07822"
y="5.8523188"
style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:10px;font-family:'Liberation Serif';-inkscape-font-specification:'Liberation Serif Italic'">v</tspan></text>
<text
xml:space="preserve"
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
x="349.16055"
y="6.0732894"
id="text4264-7-9-9"
sodipodi:linespacing="125%"><tspan
sodipodi:role="line"
id="tspan4266-7-6-4"
x="349.16055"
y="6.0732894"
style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:10px;font-family:'Liberation Serif';-inkscape-font-specification:'Liberation Serif Italic'">v</tspan></text>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 29 KiB

After

Width:  |  Height:  |  Size: 35 KiB

View File

@@ -1,7 +1,7 @@
%!PS-Adobe-2.0 EPSF-2.0
%%Title: error_timed_nexus.tex
%%Creator: gnuplot 5.0 patchlevel 1
%%CreationDate: Tue Feb 16 19:06:27 2016
%%CreationDate: Wed Feb 17 14:47:42 2016
%%DocumentFonts:
%%BoundingBox: 50 50 294 150
%%EndComments
@@ -441,7 +441,7 @@ SDict begin [
/Author (kazu)
% /Producer (gnuplot)
% /Keywords ()
/CreationDate (Tue Feb 16 19:06:27 2016)
/CreationDate (Wed Feb 17 14:47:42 2016)
/DOCINFO pdfmark
end
} ifelse

View File

@@ -83,9 +83,9 @@ set object 10 rectangle from 142,0 to 150,15 fs solid noborder fc rgb "#dddddd"
set label 10 "\\footnotesize{10}" at 146,10 center rotate by 0 front
set object 900 rectangle at graph 0.5, 0.94 size graph 0.65,0.12 fs solid fc rgb "#ffffff" lc rgb "#000000"
set label 901 "\\textcolor[rgb]{0,0,0}{\\footnotesize{simple \\eqref{eq:transSimple}}}" at graph 0.28, 0.94 center front
set label 902 "\\textcolor[rgb]{0,0,0.8}{\\footnotesize{multi \\eqref{eq:transMultiPath}}}" at graph 0.49, 0.94 center front
set label 903 "\\textcolor[rgb]{0.8,0,0}{\\footnotesize{shortest \\eqref{eq:transShortestPath}}}" at graph 0.71, 0.94 center front
set label 901 "\\textcolor[rgb]{0,0,0}{\\footnotesize{simple}}" at graph 0.28, 0.94 center front
set label 902 "\\textcolor[rgb]{0,0,0.8}{\\footnotesize{multi}}" at graph 0.49, 0.94 center front
set label 903 "\\textcolor[rgb]{0.8,0,0}{\\footnotesize{shortest}}" at graph 0.71, 0.94 center front
unset key
set yrange[0:13]

View File

@@ -110,9 +110,9 @@
\put(4057,1559){\makebox(0,0){\strut{}\footnotesize{8}}}%
\put(4421,1559){\makebox(0,0){\strut{}\footnotesize{9}}}%
\put(4702,1559){\makebox(0,0){\strut{}\footnotesize{10}}}%
\put(1793,1846){\makebox(0,0){\strut{}\textcolor[rgb]{0,0,0}{\footnotesize{simple \eqref{eq:transSimple}}}}}%
\put(2682,1846){\makebox(0,0){\strut{}\textcolor[rgb]{0,0,0.8}{\footnotesize{multi \eqref{eq:transMultiPath}}}}}%
\put(3614,1846){\makebox(0,0){\strut{}\textcolor[rgb]{0.8,0,0}{\footnotesize{shortest \eqref{eq:transShortestPath}}}}}%
\put(1793,1846){\makebox(0,0){\strut{}\textcolor[rgb]{0,0,0}{\footnotesize{simple}}}}%
\put(2682,1846){\makebox(0,0){\strut{}\textcolor[rgb]{0,0,0.8}{\footnotesize{multi}}}}%
\put(3614,1846){\makebox(0,0){\strut{}\textcolor[rgb]{0.8,0,0}{\footnotesize{shortest}}}}%
}%
\gplbacktext
\put(0,0){\includegraphics{error_timed_nexus}}%

View File

@@ -70,7 +70,7 @@ set multiplot layout 1,1 scale 2.4,2.4 offset 0,0.1
splot \
"data/floors.dat" with lines lc rgb "#cccccc" notitle,\
"data/est_bergwerk_path4_nexus_multi.dat" using 1:2:3:(f4(column(0))) with lines lw 8 palette notitle,\
"data/est_bergwerk_path4_nexus_multi.dat" with lines lw 2 lc rgb "#000099" title "\\footnotesize{multi \\eqref{eq:transMultiPath}}",\
"data/est_bergwerk_path4_nexus_multi.dat" with lines lw 2 lc rgb "#000099" title "\\footnotesize{multi}",\
"data/path4.dat" with lines title "\\footnotesize{ground truth}" dashtype 3 lw 2 lc rgb "#000000"
unset multiplot

View File

@@ -1,7 +1,7 @@
%!PS-Adobe-2.0 EPSF-2.0
%%Title: path_nexus_detail.tex
%%Creator: gnuplot 5.0 patchlevel 1
%%CreationDate: Tue Feb 16 19:12:37 2016
%%CreationDate: Wed Feb 17 14:45:48 2016
%%DocumentFonts:
%%BoundingBox: 50 50 302 226
%%EndComments
@@ -441,7 +441,7 @@ SDict begin [
/Author (kazu)
% /Producer (gnuplot)
% /Keywords ()
/CreationDate (Tue Feb 16 19:12:37 2016)
/CreationDate (Wed Feb 17 14:45:48 2016)
/DOCINFO pdfmark
end
} ifelse
@@ -553,14 +553,14 @@ stroke
LTb
LCb setrgbcolor
LTb
103 89 N
1687 89 N
0 440 V
1409 0 V
-175 0 V
0 -440 V
103 89 L
175 0 V
Z stroke
103 529 M
1409 0 V
1687 529 M
-175 0 V
stroke
0.80 0.80 0.80 C 2555 1288 M
-50 -15 V
@@ -4668,19 +4668,19 @@ LC2 setrgbcolor
221 0 V
stroke
LCw setrgbcolor
1.000 103 89 1409 440 BoxColFill
1.000 1687 89 -175 440 BoxColFill
1.000 UL
LTb
LCb setrgbcolor
LTb
103 89 N
1687 89 N
0 440 V
1409 0 V
-175 0 V
0 -440 V
103 89 L
175 0 V
Z stroke
103 529 M
1409 0 V
1687 529 M
-175 0 V
stroke
0.80 0.80 0.80 C 1.000 UL
LTb

View File

@@ -84,11 +84,11 @@
}%
\gplgaddtomacro\gplfronttext{%
\csname LTb\endcsname%
\put(1027,419){\makebox(0,0)[r]{\strut{}\footnotesize{multi \eqref{eq:transMultiPath}}}}%
\put(1027,419){\makebox(0,0)[r]{\strut{}\footnotesize{multi}}}%
\csname LTb\endcsname%
\put(1027,199){\makebox(0,0)[r]{\strut{}\footnotesize{ground truth}}}%
\csname LTb\endcsname%
\put(1027,419){\makebox(0,0)[r]{\strut{}\footnotesize{multi \eqref{eq:transMultiPath}}}}%
\put(1027,419){\makebox(0,0)[r]{\strut{}\footnotesize{multi}}}%
\csname LTb\endcsname%
\put(1027,199){\makebox(0,0)[r]{\strut{}\footnotesize{ground truth}}}%
\csname LTb\endcsname%

View File

@@ -41,6 +41,13 @@
\newcommand{\mNN}{\text{nn}}
\newcommand{\mKNN}{\text{knn}}
\newcommand{\fPos}[1]{\textbf{pos}(#1)}
\newcommand{\fDistance}[2]{\delta(#1, #2)}
\newcommand{\fWA}[1]{\text{wa}(#1)}
\newcommand{\fDD}[1]{\text{dd}(#1)}
\newcommand{\fImp}[1]{\text{imp}(#1)}
\newcommand{\fNN}[2]{\text{nn}(#1, #2)}
\newcommand{\fLength}[2]{\text{length}(#1, #2)}
%\newcommand{\docIBeacon}{iBeacon}