eval parts written and refactored
completely changed the eval gfx
This commit is contained in:
@@ -50,12 +50,14 @@
|
||||
Just adding importance-factors described in \ref{sec:wallAvoidance} and \ref{sec:doorDetection}
|
||||
to the simple transition \refeq{eq:transSimple} addresses only minor local errors
|
||||
% like not sticking too close to walls. In most cases this lead only to slight improvements
|
||||
and is therefore not further evaluated.
|
||||
and is therefore not further evaluated.
|
||||
To examine the contribution our approach is able to provided, we will have a closer look
|
||||
at a long walk with many stairs, intentionally leaving the shortest path several times,
|
||||
named path 4 (see \ref{fig:paths}).
|
||||
%
|
||||
|
||||
|
||||
\commentByFrank{bergwerk\_path3\_galaxy}
|
||||
|
||||
% all paths we evaluated
|
||||
\begin{figure}
|
||||
\input{gfx/eval/paths}
|
||||
\caption{The four paths that were part of the evaluation.
|
||||
@@ -68,16 +70,65 @@
|
||||
|
||||
\commentByFrank{in den ersten paar sec ist die pfad-info teils hinderlich, da die genaue position noch sehr unklar ist und sich erst einstellen muss.
|
||||
deshalb geht der fehler hier oft leicht hoch}
|
||||
|
||||
\newcommand{\refSeg}[1]{$(#1)$}
|
||||
Fig. \ref{errorTimedNexus} shows the error for the individual segments of path 1 and path 4 recorded with the Google Nexus 6.
|
||||
Remember that we start with a uniform distribution instead of a well known pedestrian location. Therefor the first few estimations
|
||||
reside somewhere near the center of the building and result in a very high error contribution
|
||||
(see fig. \ref{nexusPathDetails} \refSeg{1}).
|
||||
%
|
||||
Even when removing those initial estimations from the error calculation, the next few seconds are still erroneous
|
||||
due to (intentionally) bad system parameters (see \ref{sec:sensors}). Furthermore, as the pedestrian is not yet walking,
|
||||
our proposed method is not yet able to addres those error. This can be seen in both
|
||||
fig. \ref{fig:nexusPathDetails} \refSeg{1} (the red are in the upper left)
|
||||
and fig \ref{fig:errorTimedNexus} \refSeg{1}.
|
||||
%
|
||||
However, as soon as the pedestrian starts moving down the hallway \refSeg{2} the error is reduced dramatically.
|
||||
Adding prior knowledge centers the density in the middle of the floor, ensures the heading is directed towards
|
||||
the shortest path and thus produces even better localisation results.
|
||||
%
|
||||
Directly hereafter, we ignore the shortest path \refSeg{3'} determined by the system and walk along \refSeg{3}
|
||||
instead. Of course, this leads to a temporally increasing error, as the system needs to detect this path change
|
||||
and takes some time to recover (see \ref{fig:errorDistNexus} \refSeg{3}). The new path to the desired destination
|
||||
is \refSeg{3''} which is also ignored. Instead, we took a much longer route down the stairwell \refSeg{4}.
|
||||
After this change is detected by the system, prior knowledge is able to reduce the error for segment \refSeg{5}.
|
||||
%
|
||||
Immediately hereafter follows a long, straight walk down the hallway. While the \docWIFI{} component pulls
|
||||
the pedestrian into the rooms on the right side, the actual walking route was located on the left side
|
||||
of the wall (see ground truth in fig. \ref{fig:nexusPathDetails} \refSeg{6}). While prior knowledge prevents
|
||||
the density being draged into the office-rooms, the estimated path is still located on the wrong side
|
||||
of the hallway. As both sides of the floor result in a route with almost the same length,
|
||||
just knowing the pedestrian's destination is not able to provide further improvments.
|
||||
Thus, a constant error of approximately the floor's width remains (see \ref{fig:nexusPathDetails} \refSeg{6}).
|
||||
%
|
||||
Due to the excellent barometer installed within the Nexus 6, the stair provides were small estimation
|
||||
errors \refSeg{7}. Hereafter follows a critical area with high errors and multimodalities. Due to an
|
||||
inhouse exhibition during the time of recording, we had to leave the ground truth by a few meters.
|
||||
Furthermore, the overcrowded areas lead to attenuated \docWIFI{} signals. Both reasons lead to the
|
||||
density being dragged into another stairwell (see \ref{fig:nexusPathDetails}, red lines in the lower right).
|
||||
The resulting multimodality (two staircases possible at the same time) leads to a rising error
|
||||
\refSeg{8}, \refSeg{9}. At the end of the walk \refSeg{10} the system is able to recover, again.
|
||||
|
||||
|
||||
% error development over time while walking along a path
|
||||
\begin{figure}
|
||||
\input{gfx/eval/error_timed_nexus}
|
||||
\caption{Development of the error while walking along path 1 (upper) and path 4 (lower) using the Google Nexus 6.
|
||||
\caption{Development of the error while walking along
|
||||
%path 1 (upper) and
|
||||
path 4 (lower) using the Google Nexus 6.
|
||||
Path 4 shows increasing errors for our methods when leaving the shortest path (3) and when facing multimodalities between two
|
||||
staircases just before the destination (9).}
|
||||
\label{fig:errorTimedNexus}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}
|
||||
\input{gfx/eval/path_nexus_detail}
|
||||
\caption{Detailed path analysis depicting the individual segments of path 4. Their corresponding error contribution can
|
||||
be seen in fig. \ref{fig:errorTimedNexus}. Even though the shortest path suggested by the system is ignored multiple
|
||||
times ($3'$ and $3''$) our approach is still able to improve the overall localisation error.}
|
||||
\label{fig:nexusPathDetails}
|
||||
\end{figure}
|
||||
|
||||
% overall error-distribution for nexus and galaxy
|
||||
\begin{figure}
|
||||
\input{gfx/eval/error_dist_nexus}
|
||||
@@ -85,11 +136,17 @@
|
||||
clearly provide an enhancement for the overall localization process.}
|
||||
\label{fig:errorDistNexus}
|
||||
\end{figure}
|
||||
\begin{figure}
|
||||
\input{gfx/eval/error_dist_galaxy}
|
||||
\caption{Nicht so markant beim galaxy, denke aber der platz reicht eh nicht, also einfach kurz erwaehnen}
|
||||
\end{figure}
|
||||
%\begin{figure}
|
||||
% \input{gfx/eval/error_dist_galaxy}
|
||||
% \caption{Nicht so markant beim galaxy, denke aber der platz reicht eh nicht, also einfach kurz erwaehnen}
|
||||
%\end{figure}
|
||||
|
||||
The error values for all other paths and the other smartphone are listed in table
|
||||
\ref{tbl:errGalaxy} and \ref{tbl:errNexus}. As can be seen, adding prior knowledge
|
||||
is able to improve the localisation for all examined situations, even when
|
||||
leaving the suggested path or when facing bad/slow sensor readings.
|
||||
|
||||
% error values
|
||||
\begin{table}
|
||||
\centering
|
||||
\begin{tabular}{|l|c|c|c|c|}
|
||||
@@ -99,6 +156,7 @@
|
||||
Shortest (\refeq{eq:transShortestPath}) & \SI{2.72}{\meter} & \SI{2.98}{\meter} & \SI{2.48}{\meter} & \SI{3.06}{\meter} \\\hline
|
||||
Multipath (\refeq{eq:transMultiPath}) & \SI{2.62}{\meter} & \SI{2.14}{\meter} & \SI{2.46}{\meter} & \SI{2.75}{\meter} \\\hline
|
||||
\end{tabular}
|
||||
\label{tbl:errNexus}
|
||||
\caption{Median error for walks conducted with the Nexus 6.}
|
||||
\end{table}
|
||||
|
||||
@@ -111,6 +169,7 @@
|
||||
Shortest (\refeq{eq:transShortestPath}) & \SI{ 5.86}{\meter} & \SI{4.14}{\meter} & \SI{5.14}{\meter} & \SI{5.20}{\meter} \\\hline
|
||||
Multipath (\refeq{eq:transMultiPath}) & \SI{ 6.35}{\meter} & \SI{4.21}{\meter} & \SI{5.03}{\meter} & \SI{6.79}{\meter} \\\hline
|
||||
\end{tabular}
|
||||
\label{tbl:errGalaxy}
|
||||
\caption{Median error for walks conducted with the Galaxy S5.}
|
||||
\end{table}
|
||||
|
||||
@@ -128,6 +187,8 @@
|
||||
\label{fig:bergwerkPath3Galaxy}
|
||||
\end{figure}
|
||||
|
||||
|
||||
|
||||
\begin{itemize}
|
||||
\item Nochmal kurz auf die Probleme des letzten Systems eingehen (schon teil der introduction)
|
||||
\item Da letztes mal nur 1 Pfad, machen wir dieses mal mehrere!
|
||||
@@ -136,27 +197,6 @@
|
||||
\item Analysiere Probleme ggf. mit schönen Grafiken.
|
||||
\item Vergleich zum Schluss das neue System mit dem Alten um eine schöne Conclusion der Verbesserungen einzuleiten.
|
||||
\end{itemize}
|
||||
|
||||
\commentByFrank{we start with a uniform distribution $\mStateVec_0$}
|
||||
|
||||
\commentByFrank{hinweis auf die verschiedenen geraete (smartphones) und unterschiede, wlan/baro}
|
||||
\commentByFrank{
|
||||
PATH4 HAELT SICH NICHT AN DEN SHORTEST PATH.
|
||||
GUTES BEISPIEL.
|
||||
der pfad wechselt sogar 2x! (3. stock)
|
||||
der shortest wird am ende etwas ungenau bei der treppe
|
||||
}
|
||||
|
||||
\commentByFrank{sensorausfall simulieren, z.b. in der mitte, oder auf einer treppe}
|
||||
\commentByFrank{zwischendrin mal stehenbleiben und schauen ob auch das klappt}
|
||||
\commentByFrank{pfad verlassen und ganz wo anders hingehen}
|
||||
|
||||
\commentByFrank{die reine importance selbst auf dem graphen hilft, aber nur minimal weiter}
|
||||
|
||||
\commentByFrank{pfad4 nexus. pfadlos laeuft mit ach und krach richtig (treppenhaus, wlan schlecht)
|
||||
mit pfad laeuft es falsch, weil die andere treppe kuerzer zum ziel ist und das wlan dort besser passt}
|
||||
|
||||
\commentByFrank{zu grosser einfluss vom pfad ist also kein allheilmittel.. kann, wie beim treppenhaus, auch nach hinten los gehen}
|
||||
|
||||
|
||||
\commentByFrank{path1: bad start due to nearby AP and bad parameters (path-loss too high): high starting errors: median better}
|
||||
|
||||
Reference in New Issue
Block a user