diff --git a/tex/chapters/experiments.tex b/tex/chapters/experiments.tex index 829acf0..6ba87a7 100644 --- a/tex/chapters/experiments.tex +++ b/tex/chapters/experiments.tex @@ -147,6 +147,8 @@ % error values \begin{table} + \caption{Median error for walks conducted with the Nexus 6.} + \label{tbl:errNexus} \centering \begin{tabular}{|l|c|c|c|c|} \hline @@ -155,12 +157,12 @@ Shortest (\refeq{eq:transShortestPath}) & \SI{2.72}{\meter} & \SI{2.98}{\meter} & \SI{2.48}{\meter} & \SI{3.06}{\meter} \\\hline Multipath (\refeq{eq:transMultiPath}) & \SI{2.62}{\meter} & \SI{2.14}{\meter} & \SI{2.46}{\meter} & \SI{2.75}{\meter} \\\hline \end{tabular} - \caption{Median error for walks conducted with the Nexus 6.} - \label{tbl:errNexus} \end{table} \begin{table} - \centering + \caption{Median error for walks conducted with the Galaxy S5.} + \label{tbl:errGalaxy} + \centering \begin{tabular}{|l|c|c|c|c|} \hline & Path1 & Path2 & Path3 & Path4 \\\hline @@ -168,8 +170,6 @@ Shortest (\refeq{eq:transShortestPath}) & \SI{ 5.86}{\meter} & \SI{4.14}{\meter} & \SI{5.14}{\meter} & \SI{5.20}{\meter} \\\hline Multipath (\refeq{eq:transMultiPath}) & \SI{ 6.35}{\meter} & \SI{4.21}{\meter} & \SI{5.03}{\meter} & \SI{6.79}{\meter} \\\hline \end{tabular} - \caption{Median error for walks conducted with the Galaxy S5.} - \label{tbl:errGalaxy} \end{table} %\begin{figure} diff --git a/tex/chapters/grid.tex b/tex/chapters/grid.tex index dcf7100..28c4fed 100644 --- a/tex/chapters/grid.tex +++ b/tex/chapters/grid.tex @@ -87,7 +87,7 @@ A* using the previously created graph would obviously lead to non-realistic paths sticking to walls and walking many diagonals. Pedestrian's however, will probably keep a small gap between themselves and nearby walls. To calculate paths that resemble this behaviour, an importance-factor is derived for - each vertex. Those will be used to modify the euclidean distance $\fDistance{u}{v}$ between two vertices + each vertex. Those will be used to modify the distance $\fDistance{u}{v}$ between two vertices $u,v$, examined by the shortest-path algorithm. To downvote vertices near walls, we need to determine the distance of each vertex from its nearest wall. @@ -139,7 +139,7 @@ % For $\mat{\Sigma}$, the two largest eigenvalues $\{\lambda_1, \lambda_2 \mid \lambda_1 > \lambda_2\}$ are calculated. If their ratio $^{\lambda_1}/_{\lambda_2}$ is above a certain - threshold, the neighbourhood describes a flat ellipse and thus either a door or a straight wall + threshold, the neighbourhood describes a flat ellipse and thus either a door or a straight wall. % To filter the latter, we enforce the euclidean distance \mbox{$\| \fPos{v} - \vec{c} \|$} between the centroid and the vertex to be very small. Hereafter, only vertices located directly within a @@ -251,7 +251,7 @@ % As new states $\mStateVec_{t}$ should approach the pedestrian's destination we use a reference $\pathRef$ all states try to reach. This references must - both, part of the shortest path and located somewhere outside of the sample-set. + be both, part of the shortest path and located somewhere outside of the sample-set. % We thus calculate the standard deviation of the distance of all samples from the centre $\pathCentroid$. After advancing the starting-vertex by three times this deviation @@ -283,8 +283,8 @@ \subsubsection{Multipath} - The shortest-path algorithm mentioned in \ref{sec:pathEstimation} already calculated the - $\fLength{v}{\dot{v}}$ % = \sum_{i=s}^{e-1} \| v_{i} - v_{i+1} \| $ + The shortest-path algorithm mentioned in \ref{sec:pathEstimation} already calculated the distance + $\fDistance{v}{\dot{v}}$ % = \sum_{i=s}^{e-1} \| v_{i} - v_{i+1} \| $ for the path from $v$ to the pedestrian's destination $\dot{v}$. We thus apply the same assumption as \refeq{eq:transShortestPath} and downvote edges not decreasing the distance to the destination: @@ -296,7 +296,7 @@ \mathcal{N} (\angle e \mid \gHead, \sigma_\text{dev}^2) \cdot \alpha \\ \alpha &= \begin{cases} - 0.9 & \fLength{v'}{\dot{v}} < \fLength{v}{\dot{v}} \\ + 0.9 & \fDistance{v'}{\dot{v}} < \fDistance{v}{\dot{v}} \\ 0.1 & \text{else} \end{cases} \end{split}