deactivated comments from frank
This commit is contained in:
@@ -8,7 +8,7 @@
|
||||
To sample only transitions that are actually feasible
|
||||
within the environment, we utilize a \SI{20}{\centimeter}-gridded graph
|
||||
$G = (V,E)$ with vertices $v_i \in V$ and undirected edges $e_{i,j} \in E$
|
||||
\commentByFrank{notation geaendert. so ok?}
|
||||
%\commentByFrank{notation geaendert. so ok?}
|
||||
derived from the buildings floorplan as described in section \ref{sec:relatedWork}.
|
||||
However, we add improved $z$-transitions by also modelling realistic
|
||||
stairwells using nodes and edges, depicted in fig. \ref{fig:gridStairs}.
|
||||
@@ -36,7 +36,7 @@
|
||||
|
||||
New states $\mStateVec_{t}$ may now be sampled by starting at the vertex for
|
||||
position $\fPos{\mStateVec_{t-1}} = (x,y,z)^T$
|
||||
\commentByFrank{eingefuehrt}
|
||||
%\commentByFrank{eingefuehrt}
|
||||
and walking along adjacent nodes into a given walking-direction $\gHead$ until a distance $\gDist$ is
|
||||
reached \cite{Ebner-15}.
|
||||
Both, heading and distance, are supplied by the current sensor readings $\mObsVec_{t}$
|
||||
@@ -48,21 +48,21 @@
|
||||
\gDist &= \mObs_t^{\mObsSteps} \cdot \mStepSize + \mathcal{N}(0, \sigma_{\gDist}^2)
|
||||
.
|
||||
\end{align}
|
||||
\commentByFrank{fixed. war das falsche makro in (2) und dem satz darunter. das delta musste weg. der state hat ein absolutes heading. step-size als variable}
|
||||
%\commentByFrank{fixed. war das falsche makro in (2) und dem satz darunter. das delta musste weg. der state hat ein absolutes heading. step-size als variable}
|
||||
%
|
||||
During the random walk, each edge has its own probability $p(\mEdgeAB)$
|
||||
which e.g. depends on the edge's direction $\angle \mEdgeAB$ and the
|
||||
pedestrian's current heading $\gHead$.
|
||||
Furthermore, section \ref{sec:nav} uses $p(\mEdgeAB)$ to incorporate prior path knowledge to
|
||||
favour edges leading towards the pedestrian's desired target $\mVertexDest$.
|
||||
\commentByFrank{fixed}
|
||||
%\commentByFrank{fixed}
|
||||
|
||||
For each single movement on the graph, we calculate $p(\mEdgeAB)$ for all edges
|
||||
connected to a vertex $\mVertexA$, and, hereafter, randomly draw the to-be-walked edge
|
||||
depending on those probabilities. This step is repeated until the sum
|
||||
of the length of all used edges exceeds $d$. The latter depends on the number of
|
||||
detected steps $\mObs_t^{\mObsSteps}$ and the pedestrian's step-size $\mStepSize$.
|
||||
\commentByFrank{step-size als variable}
|
||||
%\commentByFrank{step-size als variable}
|
||||
|
||||
To quantify the improvement prior knowledge is able to provide,
|
||||
we define a simple reference for $p(\mEdgeAB)$ that assigns a probability to each edge
|
||||
@@ -105,7 +105,7 @@
|
||||
themselves and nearby walls. To calculate paths that resemble this behaviour, an importance-factor is derived for
|
||||
each vertex. Those will be used to scale the distance between two nodes, just like navigation systems use
|
||||
the speed-limit as scaling-factor.
|
||||
\commentByFrank{so besser? der ganze absatz.}
|
||||
%\commentByFrank{so besser? der ganze absatz.}
|
||||
To downvote vertices near walls, we need to determine the distance of each vertex from its nearest wall.
|
||||
We therefore derive an inverted version $G' = (V', E')$ of the graph $G$, just describing walls and
|
||||
obstacles. A nearest-neighbour search \cite{Cover1967} $\fNN{\mVertexA}{V'}$ within $V'$ provides the vertex
|
||||
@@ -121,7 +121,7 @@
|
||||
\enskip .
|
||||
\label{eq:wallAvoidance}
|
||||
\end{equation}
|
||||
\commentByFrank{fixed. WA war WallAvoidance. hatte statt ll immer $\|$ gelesen und deshalb nicht verstanden}
|
||||
%\commentByFrank{fixed. WA war WallAvoidance. hatte statt ll immer $\|$ gelesen und deshalb nicht verstanden}
|
||||
%
|
||||
%The parameters of the normal distribution and the scaling-factors were chosen empirically.
|
||||
%While this approach provides good results for most areas, doors are downvoted by
|
||||
@@ -155,7 +155,7 @@
|
||||
\end{equation}
|
||||
%
|
||||
For $\mat{\Sigma}$, the two largest eigenvalues $\lambda_1, \lambda_2$ with $\lambda_1 > \lambda_2$
|
||||
\commentByFrank{fixed}
|
||||
%\commentByFrank{fixed}
|
||||
are calculated. If their ratio $^{\lambda_1}/_{\lambda_2}$ is above a certain
|
||||
threshold, the neighbourhood describes a flat ellipse and thus either a door or a straight wall.
|
||||
%
|
||||
@@ -180,7 +180,7 @@
|
||||
the distance of a vertex $\mVertexA$ from its nearest door and a deviation
|
||||
of \SI{1.0}{\meter}:
|
||||
%
|
||||
%\commentByFrank{distanzrechnung: formel ok?}
|
||||
%%\commentByFrank{distanzrechnung: formel ok?}
|
||||
\begin{equation}
|
||||
\fDD{\mVertexA} = \mathcal{N}( \| \fPos{\mVertexA} - \vec{c} \| \mid 0.0, 1.0^2 )
|
||||
\label{eq:doorDetection}
|
||||
@@ -265,7 +265,7 @@
|
||||
represents the most proper state of the posterior distribution at time $t-1$, is calculated.
|
||||
%
|
||||
%
|
||||
%\commentByFrank{avg-state vom sample-set. frank d. meinte ja hier muessen wir aufpassen. bin noch unschluessig wie.}
|
||||
%%\commentByFrank{avg-state vom sample-set. frank d. meinte ja hier muessen wir aufpassen. bin noch unschluessig wie.}
|
||||
%\commentByToni{Das ist gar nicht so einfach... wir haben nie ein Sample Set eingefuehrt. Nicht mal einen Sample. Wir haben immer nur diesen State... Man könnte natuerlich einfach sagen das $\Upsilon_t$ an set of random samples representing the posterior distribution ist oder einfach nur ein set von partikeln. habs mal eingefuegt wie ich denke}
|
||||
%
|
||||
This centre serves as the starting point for the shortest-path calculation.
|
||||
@@ -279,7 +279,7 @@ represents the most proper state of the posterior distribution at time $t-1$, is
|
||||
%
|
||||
We thus calculate the standard deviation of the distance of all sample-positions
|
||||
$\fPos{\mStateVec_{t-1}}$ from aforementioned centre $\pathCentroid$.
|
||||
\commentByFrank{so klarer? platz fuer groese Eq. fehlt und Notation zum ansprechen jedes einzelnen Particles vermeide ich lieber...}
|
||||
%\commentByFrank{so klarer? platz fuer groese Eq. fehlt und Notation zum ansprechen jedes einzelnen Particles vermeide ich lieber...}
|
||||
|
||||
%\begin{equation}
|
||||
% d_\text{cen} = \| pos(q_{t-1}) - \pathCentroid \|
|
||||
@@ -309,7 +309,7 @@ represents the most proper state of the posterior distribution at time $t-1$, is
|
||||
\enskip .
|
||||
\label{eq:transShortestPath}
|
||||
\end{equation}
|
||||
\commentByFrank{$\mUsePath$ als variable}
|
||||
%\commentByFrank{$\mUsePath$ als variable}
|
||||
%
|
||||
|
||||
|
||||
@@ -348,7 +348,7 @@ represents the most proper state of the posterior distribution at time $t-1$, is
|
||||
Both possible paths are covered and slight deviations are possible.
|
||||
Additionally shows the shortest-path calculation without (dashed) and with (solid) importance-factors
|
||||
used for edge-weight-adjustment.}
|
||||
\commentByFrank{so besser?}
|
||||
%\commentByFrank{so besser?}
|
||||
\label{fig:multiHeatMap}
|
||||
\end{figure}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user