To prevent degradation within the particle-filter \cite{??} due to downvoting of particles with increased
heading deviation, we incorporate the turn-detection as control-data \commentByToni{ich würde es jetzt nicht unbedingt controldata nennen. einfach nur das wir die observation in die transition integrieren. fertig.} directly into the transition
heading deviation, we incorporate the turn-detection as control-data
\commentByToni{ich würde es jetzt nicht unbedingt controldata nennen. einfach nur das wir die observation in die transition integrieren. fertig. für den cite oben habe ich eine sehr sehr gute quelle. der beschreibt das ganz gut. hab das bei mir in der MA so begründet: Another big disadvantage is the high possibility of sample impoverishment due to a small measurement noise. This happens since accurate observations result in high peaks of the evaluation density and therefore the importance density is not able to sample outside that peak [IB98b].}
where $\mObsVec_{1:t}=\mObsVec_{1}, \mObsVec_{1}, ..., \mObsVec_{t}$ is a series of observations up to time $t$.
The hidden state $\mStateVec$ is given by
\begin{equation}
\mStateVec = (x, y, z, \mObsHeading, \mStatePressure),\enskip
x,y,z,\mStatePressure\in\R\enspace,
\end{equation}
where $x, y, z$ represent the 3D position, $\mObsHeading$ the user's heading and $\mStatePressure$ the relative pressure prediction in hectopascal (hPa).
The recursive part of the density estimation contains all information up to time $t$.
Further, the state transition models the pedestrian’s movement based upon random walks on graphs, which will be described in section \ref{sec:trans}.
It should be noted, that we also include the current observation $\mObsVec_{t}$ in it.
Containing all relevant sensor measurements to evaluate the current state, the observation vector is defined as follows:
Here, every single component refers to a probabilistic sensor model.
The heading information is evaluated using $p(\vec{o}_t \mid\vec{q}_t, \vec{q}_{t-1})_\text{turn}$, the step length using a step detection process by $p(\vec{o}_t \mid\vec{q}_t, \vec{q}_{t-1})_\text{step}$, using $p(\vec{o}_t \mid\vec{q}_t)_\text{baro}$ the barometer evaluates the current floor, whereby absolute position information is given by $p(\vec{o}_t \mid\vec{q}_t)_\text{ib}$ for iBeacons and by $p(\vec{o}_t \mid\vec{q}_t)_\text{wifi}$ for Wi-Fi.
\commentByFrank{particle-filter wie bei lukas mit $\vec{o}_{t}$ in transition und $\vec{q}_{t-1}$ in eval??}
\commentByFrank{brauchen wir in der observation ueberhaupt noch $q_{t-1}$??}
\commentByFrank{das ist die basis fuer unser system}
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.