sensors, baro + wifi druebergeschaut
This commit is contained in:
@@ -41,8 +41,6 @@ By assuming statistical independence of all sensor models, the probability densi
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
&p(\vec{o}_t \mid \vec{q}_t, \vec{q}_{t-1}) = \\
|
||||
&p(\vec{o}_t \mid \vec{q}_t, \vec{q}_{t-1})_\text{turn}
|
||||
\,p(\vec{o}_t \mid \vec{q}_t, \vec{q}_{t-1})_\text{step} \\
|
||||
&p(\vec{o}_t \mid \vec{q}_t)_\text{baro}
|
||||
\,p(\vec{o}_t \mid \vec{q}_t)_\text{ib}
|
||||
\,p(\vec{o}_t \mid \vec{q}_t)_\text{wifi}
|
||||
@@ -50,9 +48,9 @@ By assuming statistical independence of all sensor models, the probability densi
|
||||
\label{eq:evalBayes}
|
||||
\end{equation}
|
||||
%
|
||||
\commentByFrank{die zeile in der mitte (step/turn) faellt ganz weg. also generell kein $q_{t-1}$ mehr}
|
||||
%
|
||||
Here, every single component refers to a probabilistic sensor model.
|
||||
The heading information is evaluated using $p(\vec{o}_t \mid \vec{q}_t, \vec{q}_{t-1})_\text{turn}$, the step length using a step detection process by $p(\vec{o}_t \mid \vec{q}_t, \vec{q}_{t-1})_\text{step}$, using $p(\vec{o}_t \mid \vec{q}_t)_\text{baro}$ the barometer evaluates the current floor, whereby absolute position information is given by $p(\vec{o}_t \mid \vec{q}_t)_\text{ib}$ for iBeacons and by $p(\vec{o}_t \mid \vec{q}_t)_\text{wifi}$ for Wi-Fi.
|
||||
The barometer information is evaluated using $p(\vec{o}_t \mid \vec{q}_t)_\text{baro}$, whereby absolute position information is given by $p(\vec{o}_t \mid \vec{q}_t)_\text{ib}$ for iBeacons and by $p(\vec{o}_t \mid \vec{q}_t)_\text{wifi}$ for Wi-Fi.
|
||||
|
||||
\todo{art unseres particle filters hier einfuehren. transition als proposal. dann kann man spaeter bei step und turn besser begruenden warum wir es in die transition ziehen.}
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user