This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
FtmPrologic/code/Eval.cpp

70 lines
2.2 KiB
C++

#include "Eval.h"
#include "Settings.h"
#include <Indoor/math/distribution/Normal.h>
double ftmEval(SensorMode UseSensor, const Timestamp& currentTime, const Point3& particlePos, const std::vector<WiFiMeasurement>& measurements, std::shared_ptr<std::unordered_map<MACAddress, Kalman>> ftmKalmanFilters)
{
double result = 1.0;
for (WiFiMeasurement wifi : measurements)
{
if (wifi.getNumSuccessfulMeasurements() < 3)
{
continue;
}
const MACAddress& mac = wifi.getAP().getMAC();
int nucIndex = Settings::nucIndex(mac);
const Point3 apPos = Settings::data.CurrentPath.nucInfo(nucIndex).position;
// particlePos.z = 1.3; // smartphone höhe
const float apDist = particlePos.getDistance(apPos);
// compute ftm distance
float ftm_offset = Settings::data.CurrentPath.NUCs.at(mac).ftm_offset;
float ftmDist = wifi.getFtmDist() + ftm_offset; // in m; plus static offset
float rssi_pathloss = Settings::data.CurrentPath.NUCs.at(mac).rssi_pathloss;
float rssiDist = LogDistanceModel::rssiToDistance(-40, rssi_pathloss, wifi.getRSSI());
if (UseSensor == SensorMode::FTM)
{
if (ftmDist > 0)
{
//double sigma = wifi.getFtmDistStd()*wifi.getFtmDistStd(); // 3.5; // TODO
double sigma = 5;
if (ftmKalmanFilters != nullptr)
{
Kalman& kalman = ftmKalmanFilters->at(mac);
ftmDist = kalman.predict(currentTime, ftmDist);
//sigma = std::sqrt(kalman.P(0, 0));
Assert::isTrue(sigma > 0, "sigma");
double x = Distribution::Normal<double>::getProbability(ftmDist, sigma, apDist);
result *= x;
}
else
{
double x = Distribution::Normal<double>::getProbability(ftmDist, sigma, apDist);
result *= x;
}
}
}
else
{
// RSSI
double sigma = 5;
double x = Distribution::Normal<double>::getProbability(rssiDist, sigma, apDist);
result *= x;
}
}
return result;
}