This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
FtmPrologic/code/mainTrilat.cpp

324 lines
11 KiB
C++

#include "main.h"
#include <array>
#include <memory>
#include <thread>
#include <filesystem>
#include <chrono>
#include <iostream>
#include <Indoor/math/stats/Statistics.h>
#include <Indoor/floorplan/v2/FloorplanReader.h>
#include <Indoor/sensors/offline/FileReader.h>
#include <Indoor/sensors/offline/Sensors.h>
#include <Indoor/sensors/radio/model/LogDistanceModel.h>
#include <Indoor/geo/Heading.h>
#include <Indoor/geo/Point2.h>
#include <Indoor/data/Timestamp.h>
#include <Indoor/math/MovingAVG.h>
#include "Settings.h"
#include "Plotty.h"
#include "Plotta.h"
#include "trilateration.h"
#include "misc.h"
static CombinedStats<float> run(Settings::DataSetup setup, int walkIdx, std::string folder)
{
// reading file
Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(setup.map);
Offline::FileReader fr(setup.training[walkIdx], setup.HasNanoSecondTimestamps);
// ground truth
std::vector<int> gtPath = setup.gtPath;
Interpolator<uint64_t, Point3> gtInterpolator = fr.getGroundTruthPath(map, gtPath);
CombinedStats<float> errorStats;
//calculate distance of path
std::vector<Interpolator<uint64_t, Point3>::InterpolatorEntry> gtEntries = gtInterpolator.getEntries();
double gtTotalDistance = 0;
Stats::Statistics<double> gtWalkingSpeed;
for (int i = 1; i < gtEntries.size(); ++i) {
double distance = gtEntries[i].value.getDistance(gtEntries[i - 1].value);
double timeDiff = static_cast<double>(gtEntries[i].key - gtEntries[i - 1].key);
double walkingSpeed = distance / (timeDiff / 1000.0f); // m / s
gtWalkingSpeed.add(walkingSpeed);
gtTotalDistance += distance;
}
std::cout << "Distance of Path: " << gtTotalDistance << std::endl;
std::cout << "GT walking speed: " << gtWalkingSpeed.getAvg() << "m/s (" << gtWalkingSpeed.getAvg()*3.6f << "km/h)" << std::endl;
// debug show
//MeshPlotter dbg;
//dbg.addFloors(map);
//dbg.addOutline(map);
//dbg.addMesh(mesh);
////dbg.addDijkstra(mesh);
//dbg.draw();
Plotty plot(map);
plot.buildFloorplan();
plot.setGroundTruth(gtPath);
plot.setView(30, 0);
// APs Positions
for (auto& nucConfig : setup.NUCs)
{
plot.addCircle(10000 + nucConfig.second.ID, nucConfig.second.position.xy(), 0.1);
}
plot.plot();
// Output dir
auto outputDir = std::filesystem::path(Settings::outputDir);
outputDir.append(Settings::CurrentPath.name + "_" + std::to_string(walkIdx));
if (!std::filesystem::exists(outputDir)) {
std::filesystem::create_directories(outputDir);
}
std::vector<WiFiMeasurement> obs;
Timestamp lastTimestamp = Timestamp::fromMS(0);
Plotta::Plotta plotta("test", "C:\\Temp\\Plotta\\dataTrilat.py");
//plotta.add("apPos", apPositions);
const int movAvgWnd = 10;
std::unordered_map<MACAddress, MovingAVG<float>> movAvgsFtm;
std::unordered_map<MACAddress, MovingAVG<float>> movAvgsRssi;
for (auto& nucConfig : setup.NUCs)
{
movAvgsFtm.insert({ nucConfig.first, MovingAVG<float>(movAvgWnd) });
movAvgsRssi.insert({ nucConfig.first, MovingAVG<float>(movAvgWnd) });
}
std::vector<float> errorValuesFtm, errorValuesRssi;
std::vector<int> timestamps;
std::vector<Point2> estPathFtm, estPathRssi;
for (const Offline::Entry& e : fr.getEntries())
{
if (e.type != Offline::Sensor::WIFI_FTM && e.type != Offline::Sensor::GROUND_TRUTH) {
continue;
}
// TIME
const Timestamp ts = Timestamp::fromMS(e.ts);
if (e.type == Offline::Sensor::WIFI_FTM)
{
auto wifiFtm = fr.getWifiFtm()[e.idx].data;
obs.push_back(wifiFtm);
}
if (ts - lastTimestamp >= Timestamp::fromMS(500))
{
// Do update
Point2 gtPos = gtInterpolator.get(static_cast<uint64_t>(ts.ms())).xy();
plot.setGroundTruth(Point3(gtPos.x, gtPos.y, 0.1));
std::unordered_map<MACAddress, std::pair<float, float>> apPosDistMap;
for (const WiFiMeasurement& wifi : obs)
{
if (wifi.getNumSuccessfulMeasurements() < 3)
continue;
const MACAddress& mac = wifi.getAP().getMAC();
float ftm_offset = setup.NUCs.at(mac).ftm_offset;
float ftmDist = wifi.getFtmDist() + ftm_offset;
float rssi_pathloss = setup.NUCs.at(mac).rssi_pathloss;
float rssiDist = LogDistanceModel::rssiToDistance(-40, rssi_pathloss, wifi.getRSSI());
movAvgsFtm[mac].add(ftmDist);
movAvgsRssi[mac].add(rssiDist);
apPosDistMap[mac] = { movAvgsFtm[mac].get(), movAvgsRssi[mac].get() };
}
if (apPosDistMap.size() > 3)
{
// Do update for real
std::vector<MACAddress> macs;
std::vector<Point2> apPositions;
std::vector<float> ftmDists;
std::vector<float> rssiDists;
for (const auto& kvp : apPosDistMap)
{
macs.push_back(kvp.first);
apPositions.push_back(setup.NUCs.at(kvp.first).position.xy());
ftmDists.push_back(kvp.second.first);
rssiDists.push_back(kvp.second.second);
}
Point2 estFtmPos = Trilateration::levenbergMarquardt(apPositions, ftmDists);
Point2 estRssiPos = Trilateration::levenbergMarquardt(apPositions, rssiDists);
// Error
float distErrorFtm = gtPos.getDistance(estFtmPos);
errorStats.ftm.add(distErrorFtm);
estPathFtm.push_back(estFtmPos);
float distErrorRssi = gtPos.getDistance(estRssiPos);
errorStats.rssi.add(distErrorRssi);
estPathRssi.push_back(estRssiPos);
errorValuesFtm.push_back(distErrorFtm);
errorValuesRssi.push_back(distErrorRssi);
timestamps.push_back(ts.ms());
plotta.add("t", timestamps);
plotta.add("errorFtm", errorValuesFtm);
plotta.add("errorRssi", errorValuesRssi);
plotta.frame();
// Plot
plot.setCurEst(Point3(estFtmPos.x, estFtmPos.y, 0.1));
plot.addEstimationNode(Point3(estFtmPos.x, estFtmPos.y, 0.1));
plot.addEstimationNode2(Point3(estRssiPos.x, estRssiPos.y, 0.1));
// draw wifi ranges
if (Settings::PlotCircles)
{
plot.clearDistanceCircles();
plot.splot.getCustom().str("");
for (size_t i = 0; i < 20; i++)
{
plot.splot.getCustom() << "unset label " << i << "\n";
}
for (size_t i = 0; i < ftmDists.size(); i++)
{
plot.addDistanceCircle(apPositions[i], ftmDists[i], K::GnuplotColor::fromRGB(255, 0, 0));
plot.addDistanceCircle(apPositions[i], rssiDists[i], K::GnuplotColor::fromRGB(0, 255, 0));
// Distance labels
std::stringstream ss;
ss << setup.nuc(macs[i]).ID << ": " << ftmDists[i] << "m";
plot.addLabel(ss.str(), Point3(70, i*5, 0), i);
}
}
}
// Png Output
//if (Settings::PlotToPng)
//{
// plot.gp.setTerminal("png", K::GnuplotSize(1280, 720));
// auto pngPath = outputDir / "png" / "trilat" / "frame.png";
// // clear folder
// //std::filesystem::remove_all(pngPath);
// forceDirectories(pngPath.parent_path());
// //std::filesystem::create_directory(pngPath);
// plot.gp.setOutput(appendFileSuffixToPath(pngPath, ts.ms()).string());
//}
plot.plot();
std::this_thread::sleep_for(std::chrono::milliseconds(100));
obs.clear();
lastTimestamp = ts;
}
printf("");
}
plotta.add("estPathFtm", estPathFtm);
plotta.add("estPathRssi", estPathRssi);
plotta.frame();
printErrorStats(errorStats);
return errorStats;
}
int mainTrilat(int argc, char** argv)
{
// global stats
CombinedStats<float> statsAVG;
CombinedStats<float> statsMedian;
CombinedStats<float> statsSTD;
CombinedStats<float> statsQuantil;
CombinedStats<float> tmp;
std::string evaluationName = "prologic/trilat";
std::vector<Settings::DataSetup> setupsToRun = {
//Settings::data.Path5,
//Settings::data.Path7,
//Settings::data.Path8,
//Settings::data.Path9,
//Settings::data.Path10,
//Settings::data.Path11
//Settings::data.Path20,
Settings::data.Path21,
//Settings::data.Path22,
};
for (Settings::DataSetup setupToRun : setupsToRun)
{
Settings::CurrentPath = setupToRun;
for (size_t walkIdx = 0; walkIdx < Settings::CurrentPath.training.size(); walkIdx++)
{
std::cout << "Executing walk " << walkIdx << "\n";
for (int i = 0; i < 1; ++i)
{
std::cout << "Start of iteration " << i << "\n";
tmp = run(Settings::CurrentPath, walkIdx, evaluationName);
statsAVG.ftm.add(tmp.ftm.getAvg());
statsMedian.ftm.add(tmp.ftm.getMedian());
statsSTD.ftm.add(tmp.ftm.getStdDev());
statsQuantil.ftm.add(tmp.ftm.getQuantile(0.75));
statsAVG.rssi.add(tmp.rssi.getAvg());
statsMedian.rssi.add(tmp.rssi.getMedian());
statsSTD.rssi.add(tmp.rssi.getStdDev());
statsQuantil.rssi.add(tmp.rssi.getQuantile(0.75));
std::cout << "Iteration " << i << " completed" << std::endl;
}
}
std::cout << "Results for path " << Settings::CurrentPath.name << std::endl;
std::cout << "==========================================================" << std::endl;
std::cout << "Average of all statistical data FTM: " << std::endl;
std::cout << "Median: " << statsMedian.ftm.getAvg() << std::endl;
std::cout << "Average: " << statsAVG.ftm.getAvg() << std::endl;
std::cout << "Standard Deviation: " << statsSTD.ftm.getAvg() << std::endl;
std::cout << "75 Quantil: " << statsQuantil.ftm.getAvg() << std::endl;
std::cout << "==========================================================" << std::endl;
std::cout << "==========================================================" << std::endl;
std::cout << "Average of all statistical data RSSI: " << std::endl;
std::cout << "Median: " << statsMedian.rssi.getAvg() << std::endl;
std::cout << "Average: " << statsAVG.rssi.getAvg() << std::endl;
std::cout << "Standard Deviation: " << statsSTD.rssi.getAvg() << std::endl;
std::cout << "75 Quantil: " << statsQuantil.rssi.getAvg() << std::endl;
std::cout << "==========================================================" << std::endl;
}
return 0;
}