524 lines
18 KiB
C++
524 lines
18 KiB
C++
#include "main.h"
|
|
|
|
#include "mesh.h"
|
|
#include "filter.h"
|
|
#include "Settings.h"
|
|
#include "meshPlotter.h"
|
|
#include "Plotty.h"
|
|
#include "Plotta.h"
|
|
|
|
#include <array>
|
|
#include <memory>
|
|
#include <thread>
|
|
#include <filesystem>
|
|
#include <chrono>
|
|
|
|
#include <Indoor/floorplan/v2/FloorplanReader.h>
|
|
#include <Indoor/sensors/offline/FileReader.h>
|
|
#include <Indoor/geo/Heading.h>
|
|
#include <Indoor/geo/Point2.h>
|
|
#include <Indoor/sensors/imu/TurnDetection.h>
|
|
#include <Indoor/sensors/imu/StepDetection.h>
|
|
#include <Indoor/sensors/imu/PoseDetection.h>
|
|
#include <Indoor/sensors/imu/MotionDetection.h>
|
|
#include <Indoor/sensors/pressure/RelativePressure.h>
|
|
#include <Indoor/data/Timestamp.h>
|
|
|
|
|
|
#include <Indoor/math/stats/Statistics.h>
|
|
|
|
#include "FtmKalman.h"
|
|
#include "mainFtm.h"
|
|
#include "misc.h"
|
|
|
|
#include <sys/stat.h>
|
|
|
|
using namespace std::chrono_literals;
|
|
|
|
std::vector<std::tuple<float, float, float>> getFtmValues(Offline::FileReader& fr, Interpolator<uint64_t, Point3>& gtInterpolator, const MACAddress nuc)
|
|
{
|
|
std::vector<std::tuple<float, float, float>> result;
|
|
|
|
for (const Offline::Entry& e : fr.getEntries())
|
|
{
|
|
if (e.type == Offline::Sensor::WIFI_FTM)
|
|
{
|
|
const Timestamp ts = Timestamp::fromMS(e.ts);
|
|
|
|
Point3 gtPos = gtInterpolator.get(static_cast<uint64_t>(ts.ms())) + Point3(0, 0, 1.3);
|
|
|
|
auto wifi = fr.getWifiFtm()[e.idx].data;
|
|
|
|
if (wifi.getAP().getMAC() == nuc)
|
|
{
|
|
Point3 apPos = Settings::data.CurrentPath.NUCs.find(wifi.getAP().getMAC())->second.position;
|
|
float apDist = gtPos.getDistance(apPos);
|
|
float ftmDist = wifi.getFtmDist();
|
|
float rssi = wifi.getRSSI();
|
|
|
|
result.push_back({ apDist, ftmDist, rssi });
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
std::pair<float, float> optimizeFtm(std::vector<std::tuple<float, float, float>>& values)
|
|
{
|
|
std::vector<std::pair<float, float>> error;
|
|
|
|
for (float offset = 0; offset < 10.0f; offset += 0.25)
|
|
{
|
|
Stats::Statistics<float> diffs;
|
|
|
|
for (const auto& data : values)
|
|
{
|
|
float apDist = std::get<0>(data);
|
|
float ftmDist = std::get<1>(data);
|
|
ftmDist += offset;
|
|
|
|
float diff = (apDist - ftmDist);
|
|
|
|
diffs.add(diff);
|
|
}
|
|
|
|
error.push_back({ offset, diffs.getSquaredSumAvg() });
|
|
}
|
|
|
|
auto minElement = std::min_element(error.begin(), error.end(), [](std::pair<float, float> a, std::pair<float, float> b) {
|
|
return a.second < b.second;
|
|
});
|
|
|
|
std::cout << "Min ftm offset \t" << minElement->first << "\t" << minElement->second << "\n";
|
|
|
|
return *minElement;
|
|
}
|
|
|
|
std::pair<float, float> optimizeRssi(std::vector<std::tuple<float, float, float>>& values)
|
|
{
|
|
std::vector<std::pair<float, float>> error;
|
|
|
|
for (float pathLoss = 2.0f; pathLoss < 4.0f; pathLoss += 0.125)
|
|
{
|
|
Stats::Statistics<float> diffs;
|
|
|
|
for (const auto& data : values)
|
|
{
|
|
float apDist = std::get<0>(data);
|
|
float rssi = std::get<2>(data);
|
|
float rssiDist = LogDistanceModel::rssiToDistance(-40, pathLoss, rssi);
|
|
|
|
float diff = (apDist - rssiDist);
|
|
|
|
diffs.add(diff);
|
|
}
|
|
|
|
error.push_back({ pathLoss, diffs.getSquaredSumAvg() });
|
|
}
|
|
|
|
auto minElement = std::min_element(error.begin(), error.end(), [](std::pair<float, float> a, std::pair<float, float> b) {
|
|
return a.second < b.second;
|
|
});
|
|
|
|
std::cout << "Min path loss \t" << minElement->first << "\t" << minElement->second << "\n";
|
|
|
|
return *minElement;
|
|
}
|
|
|
|
void optimizeWifiParameters(Offline::FileReader& fr, Interpolator<uint64_t, Point3>& gtInterpolator)
|
|
{
|
|
int i = 1;
|
|
for (auto nuc : { Settings::NUC1, Settings::NUC2, Settings::NUC3, Settings::NUC4 })
|
|
{
|
|
auto values = getFtmValues(fr, gtInterpolator, nuc);
|
|
std::cout << "NUC" << i++ << "\n";
|
|
|
|
optimizeFtm(values);
|
|
optimizeRssi(values);
|
|
}
|
|
}
|
|
|
|
void exportFtmValues(Offline::FileReader& fr, Interpolator<uint64_t, Point3>& gtInterpolator)
|
|
{
|
|
std::fstream fs;
|
|
fs.open("test.txt", std::fstream::out);
|
|
|
|
fs << "timestamp;nucid;dist;rssiDist;ftmDist;ftmStdDev;numMeas;numSuccesMeas" << "\n";
|
|
|
|
for (const Offline::Entry& e : fr.getEntries())
|
|
{
|
|
if (e.type == Offline::Sensor::WIFI_FTM)
|
|
{
|
|
const Timestamp ts = Timestamp::fromMS(e.ts);
|
|
|
|
Point3 gtPos = gtInterpolator.get(static_cast<uint64_t>(ts.ms())) + Point3(0, 0, 1.3);
|
|
|
|
auto wifi = fr.getWifiFtm()[e.idx].data;
|
|
|
|
int nucid = Settings::data.CurrentPath.NUCs.at(wifi.getAP().getMAC()).ID;
|
|
float ftm_offset = Settings::data.CurrentPath.NUCs.at(wifi.getAP().getMAC()).ftm_offset;
|
|
float rssi_pathloss = Settings::data.CurrentPath.NUCs.at(wifi.getAP().getMAC()).rssi_pathloss;
|
|
|
|
float rssiDist = LogDistanceModel::rssiToDistance(-40, rssi_pathloss, wifi.getRSSI());
|
|
float ftmDist = wifi.getFtmDist() + ftm_offset; //in m; plus static offset
|
|
float ftmStdDev = wifi.getFtmDistStd();
|
|
int numMeas = wifi.getNumAttemptedMeasurements();
|
|
int numSuccessMeas = wifi.getNumSuccessfulMeasurements();
|
|
|
|
Point3 apPos = Settings::data.CurrentPath.NUCs.find(wifi.getAP().getMAC())->second.position;
|
|
float apDist = gtPos.getDistance(apPos);
|
|
|
|
fs << ts.ms() << ";" << nucid << ";" << apDist << ";" << rssiDist << ";" << ftmDist << ";" << ftmStdDev << ";" << numMeas << ";" << numSuccessMeas << "\n";
|
|
}
|
|
|
|
}
|
|
fs.close();
|
|
}
|
|
|
|
|
|
|
|
static float kalman_procNoiseDistStdDev = 1.2f; // standard deviation of distance for process noise
|
|
static float kalman_procNoiseVelStdDev = 0.1f; // standard deviation of velocity for process noise
|
|
|
|
static CombinedStats<float> run(Settings::DataSetup setup, int walkIdx, std::string folder) {
|
|
|
|
// reading file
|
|
std::string currDir = std::filesystem::current_path().string();
|
|
|
|
Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(setup.map);
|
|
Offline::FileReader fr(setup.training[walkIdx], setup.HasNanoSecondTimestamps);
|
|
|
|
// ground truth
|
|
std::vector<int> gtPath = setup.gtPath;
|
|
Interpolator<uint64_t, Point3> gtInterpolator = fr.getGroundTruthPath(map, gtPath);
|
|
CombinedStats<float> errorStats;
|
|
|
|
//calculate distance of path
|
|
std::vector<Interpolator<uint64_t, Point3>::InterpolatorEntry> gtEntries = gtInterpolator.getEntries();
|
|
double distance = 0;
|
|
for(int i = 1; i < gtEntries.size(); ++i){
|
|
distance += gtEntries[i].value.getDistance(gtEntries[i-1].value);
|
|
}
|
|
|
|
std::cout << "Distance of Path: " << distance << std::endl;
|
|
|
|
// error file
|
|
const long int t = static_cast<long int>(time(NULL));
|
|
auto evalDir = std::filesystem::path(Settings::errorDir);
|
|
evalDir.append(folder);
|
|
|
|
if (!std::filesystem::exists(evalDir)) {
|
|
std::filesystem::create_directory(evalDir);
|
|
}
|
|
|
|
std::ofstream errorFile;
|
|
errorFile.open (evalDir.string() + "/" + std::to_string(walkIdx) + "_" + std::to_string(t) + ".csv");
|
|
|
|
|
|
// wifi
|
|
auto kalmanMap = std::make_shared<std::unordered_map<MACAddress, Kalman>>();
|
|
kalmanMap->insert({ Settings::NUC1, Kalman(1, setup.NUCs.at(Settings::NUC1).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev) });
|
|
kalmanMap->insert({ Settings::NUC2, Kalman(2, setup.NUCs.at(Settings::NUC2).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev) });
|
|
kalmanMap->insert({ Settings::NUC3, Kalman(3, setup.NUCs.at(Settings::NUC3).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev) });
|
|
kalmanMap->insert({ Settings::NUC4, Kalman(4, setup.NUCs.at(Settings::NUC4).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev) });
|
|
|
|
std::cout << "Optimal wifi parameters for " << setup.training[walkIdx] << "\n";
|
|
optimizeWifiParameters(fr, gtInterpolator);
|
|
|
|
// mesh
|
|
NM::NavMeshSettings set;
|
|
set.maxQuality_m = 0.10; // because of narrow hallways and small rooms reduce min. triangle size (default is 0.2)
|
|
MyNavMesh mesh;
|
|
MyNavMeshFactory fac(&mesh, set);
|
|
fac.build(map);
|
|
|
|
// debug show
|
|
//MeshPlotter dbg;
|
|
//dbg.addFloors(map);
|
|
//dbg.addOutline(map);
|
|
//dbg.addMesh(mesh);
|
|
////dbg.addDijkstra(mesh);
|
|
//dbg.draw();
|
|
|
|
Plotty plot(map);
|
|
plot.buildFloorplan();
|
|
plot.setGroundTruth(gtPath);
|
|
plot.setView(30, 0);
|
|
// APs Positions
|
|
plot.addCircle(100000 + 0, Settings::data.CurrentPath.nucInfo(0).position.xy(), 0.05);
|
|
plot.addCircle(100000 + 1, Settings::data.CurrentPath.nucInfo(1).position.xy(), 0.05);
|
|
plot.addCircle(100000 + 2, Settings::data.CurrentPath.nucInfo(2).position.xy(), 0.05);
|
|
plot.addCircle(100000 + 3, Settings::data.CurrentPath.nucInfo(3).position.xy(), 0.05);
|
|
plot.plot();
|
|
|
|
// particle-filter
|
|
const int numParticles = 5000;
|
|
//auto init = std::make_unique<MyPFInitFixed>(&mesh, srcPath0); // known position
|
|
auto init = std::make_unique<MyPFInitUniform>(&mesh); // uniform distribution
|
|
auto eval = std::make_unique<MyPFEval>();
|
|
eval->ftmKalmanFilters = kalmanMap;
|
|
|
|
auto trans = std::make_unique<MyPFTransRandom>();
|
|
//auto trans = std::make_unique<MyPFTransStatic>();
|
|
|
|
auto resample = std::make_unique<SMC::ParticleFilterResamplingSimple<MyState>>();
|
|
auto estimate = std::make_unique<SMC::ParticleFilterEstimationWeightedAverage<MyState>>();
|
|
//auto estimate = std::make_unique<SMC::ParticleFilterEstimationMax<MyState>>();
|
|
|
|
// setup
|
|
MyFilter pf(numParticles, std::move(init));
|
|
pf.setEvaluation(std::move(eval));
|
|
pf.setTransition(std::move(trans));
|
|
pf.setResampling(std::move(resample));
|
|
pf.setEstimation(std::move(estimate));
|
|
pf.setNEffThreshold(0.85);
|
|
|
|
// sensors
|
|
MyControl ctrl;
|
|
MyObservation obs;
|
|
|
|
Timestamp lastTimestamp = Timestamp::fromMS(0);
|
|
|
|
std::vector<float> errorValuesFtm, errorValuesRssi;
|
|
std::vector<int> timestamps;
|
|
std::vector<std::array<float, 4>> gtDistances, ftmDistances, rssiDistances; // distance per AP
|
|
|
|
Plotta::Plotta errorPlot("errorPlot", Settings::plotDataDir + "errorData.py");
|
|
Plotta::Plotta distsPlot("distsPlot", Settings::plotDataDir + "distances.py");
|
|
|
|
for (const Offline::Entry& e : fr.getEntries())
|
|
{
|
|
if (e.type != Offline::Sensor::WIFI_FTM) {
|
|
continue;
|
|
}
|
|
|
|
// TIME
|
|
const Timestamp ts = Timestamp::fromMS(e.ts);
|
|
|
|
auto wifiFtm = fr.getWifiFtm()[e.idx].data;
|
|
obs.ftm.push_back(wifiFtm);
|
|
|
|
|
|
if (ts - lastTimestamp >= Timestamp::fromMS(500))
|
|
{
|
|
// Do update step
|
|
Point2 gtPos = gtInterpolator.get(static_cast<uint64_t>(ts.ms())).xy();
|
|
plot.setGroundTruth(Point3(gtPos.x, gtPos.y, 0.1));
|
|
|
|
gtDistances.push_back({ gtPos.getDistance(Settings::data.CurrentPath.nucInfo(0).position.xy()),
|
|
gtPos.getDistance(Settings::data.CurrentPath.nucInfo(1).position.xy()),
|
|
gtPos.getDistance(Settings::data.CurrentPath.nucInfo(2).position.xy()),
|
|
gtPos.getDistance(Settings::data.CurrentPath.nucInfo(3).position.xy()) });
|
|
|
|
Point3 estPos;
|
|
float distErrorFtm = 0;
|
|
float distErrorRssi = 0;
|
|
|
|
// Run PF
|
|
obs.currentTime = ts;
|
|
ctrl.currentTime = ts;
|
|
|
|
MyState est = pf.update(&ctrl, obs);
|
|
ctrl.afterEval();
|
|
lastTimestamp = ts;
|
|
|
|
estPos = est.pos.pos;
|
|
ctrl.lastEstimate = estPos;
|
|
|
|
plot.setCurEst(Point3(estPos.x, estPos.y, 0.1));
|
|
plot.addEstimationNode(Point3(estPos.x, estPos.y, 0.1));
|
|
|
|
// Error
|
|
distErrorFtm = gtPos.getDistance(estPos.xy());
|
|
errorStats.ftm.add(distErrorFtm);
|
|
|
|
// draw wifi ranges
|
|
plot.clearDistanceCircles();
|
|
|
|
for (size_t i = 0; i < obs.ftm.size(); i++)
|
|
{
|
|
WiFiMeasurement wifi2 = obs.ftm[i];
|
|
|
|
Point3 apPos = Settings::data.CurrentPath.nuc(wifi2.getAP().getMAC()).position;
|
|
|
|
K::GnuplotColor color;
|
|
switch (Settings::data.CurrentPath.nuc(wifi2.getAP().getMAC()).ID)
|
|
{
|
|
case 1: color = K::GnuplotColor::fromRGB(0, 255, 0); break;
|
|
case 2: color = K::GnuplotColor::fromRGB(0, 0, 255); break;
|
|
case 3: color = K::GnuplotColor::fromRGB(255, 255, 0); break;
|
|
default: color = K::GnuplotColor::fromRGB(255, 0, 0); break;
|
|
}
|
|
|
|
plot.addDistanceCircle(apPos.xy(), wifi2.getFtmDist(), color);
|
|
}
|
|
|
|
obs.wifi.clear();
|
|
obs.ftm.clear();
|
|
|
|
|
|
errorValuesFtm.push_back(distErrorFtm);
|
|
errorValuesRssi.push_back(distErrorRssi);
|
|
timestamps.push_back(ts.ms());
|
|
|
|
// Error plot
|
|
errorPlot.add("t", timestamps);
|
|
errorPlot.add("errorFtm", errorValuesFtm);
|
|
errorPlot.add("errorRssi", errorValuesRssi);
|
|
errorPlot.frame();
|
|
|
|
// Distances plot
|
|
//distsPlot.add("t", timestamps);
|
|
//distsPlot.add("gtDists", gtDistances);
|
|
//distsPlot.add("ftmDists", ftmDistances);
|
|
//distsPlot.frame();
|
|
|
|
// Plotting
|
|
plot.showParticles(pf.getParticles());
|
|
plot.setCurEst(estPos);
|
|
plot.setGroundTruth(Point3(gtPos.x, gtPos.y, 0.1));
|
|
|
|
plot.addEstimationNode(estPos);
|
|
//plot.setActivity((int)act.get());
|
|
//plot.splot.getView().setEnabled(false);
|
|
//plot.splot.getView().setCamera(0, 0);
|
|
//plot.splot.getView().setEqualXY(true);
|
|
|
|
plot.plot();
|
|
}
|
|
}
|
|
|
|
printErrorStats(errorStats);
|
|
|
|
//system("pause");
|
|
|
|
return errorStats;
|
|
}
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
CmdArguments args(argc, argv);
|
|
|
|
if (args.hasFlag("prob"))
|
|
{
|
|
std::cout << "Probabilistic" << "\n";
|
|
return mainProp(argc, argv);
|
|
}
|
|
else if (args.hasFlag("trilat"))
|
|
{
|
|
std::cout << "Trilateration" << "\n";
|
|
return mainTrilat(argc, argv);
|
|
}
|
|
|
|
CombinedStats<float> statsAVG;
|
|
CombinedStats<float> statsMedian;
|
|
CombinedStats<float> statsSTD;
|
|
CombinedStats<float> statsQuantil;
|
|
CombinedStats<float> tmp;
|
|
|
|
std::string evaluationName = "prologic/tmp";
|
|
|
|
for (size_t walkIdx = 0; walkIdx < 1 /*Settings::data.CurrentPath.training.size()*/; walkIdx++)
|
|
{
|
|
std::cout << "Executing walk " << walkIdx << "\n";
|
|
for (int i = 0; i < 5; ++i)
|
|
{
|
|
std::cout << "Start of iteration " << i << "\n";
|
|
|
|
tmp = run(Settings::data.CurrentPath, walkIdx, evaluationName);
|
|
|
|
statsAVG.ftm.add(tmp.ftm.getAvg());
|
|
statsMedian.ftm.add(tmp.ftm.getMedian());
|
|
statsSTD.ftm.add(tmp.ftm.getStdDev());
|
|
statsQuantil.ftm.add(tmp.ftm.getQuantile(0.75));
|
|
|
|
statsAVG.rssi.add(tmp.rssi.getAvg());
|
|
statsMedian.rssi.add(tmp.rssi.getMedian());
|
|
statsSTD.rssi.add(tmp.rssi.getStdDev());
|
|
statsQuantil.rssi.add(tmp.rssi.getQuantile(0.75));
|
|
|
|
std::cout << "Iteration " << i << " completed" << std::endl;
|
|
}
|
|
}
|
|
|
|
std::cout << "==========================================================" << std::endl;
|
|
std::cout << "Average of all statistical data FTM: " << std::endl;
|
|
std::cout << "Median: " << statsMedian.ftm.getAvg() << std::endl;
|
|
std::cout << "Average: " << statsAVG.ftm.getAvg() << std::endl;
|
|
std::cout << "Standard Deviation: " << statsSTD.ftm.getAvg() << std::endl;
|
|
std::cout << "75 Quantil: " << statsQuantil.ftm.getAvg() << std::endl;
|
|
std::cout << "==========================================================" << std::endl;
|
|
|
|
std::cout << "==========================================================" << std::endl;
|
|
std::cout << "Average of all statistical data RSSI: " << std::endl;
|
|
std::cout << "Median: " << statsMedian.rssi.getAvg() << std::endl;
|
|
std::cout << "Average: " << statsAVG.rssi.getAvg() << std::endl;
|
|
std::cout << "Standard Deviation: " << statsSTD.rssi.getAvg() << std::endl;
|
|
std::cout << "75 Quantil: " << statsQuantil.rssi.getAvg() << std::endl;
|
|
std::cout << "==========================================================" << std::endl;
|
|
|
|
|
|
|
|
//std::vector<std::array<float, 3>> error;
|
|
//std::ofstream error_out;
|
|
//error_out.open(Settings::errorDir + evaluationName + "_error_path1" + ".csv", std::ios_base::app);
|
|
|
|
|
|
//for (kalman_procNoiseDistStdDev = 0.8f; kalman_procNoiseDistStdDev < 1.5f; kalman_procNoiseDistStdDev += 0.1f)
|
|
//{
|
|
// for (kalman_procNoiseVelStdDev = 0.1f; kalman_procNoiseVelStdDev < 0.5f; kalman_procNoiseVelStdDev += 0.1f)
|
|
// {
|
|
|
|
//for (size_t walkIdx = 0; walkIdx < Settings::data.CurrentPath.training.size(); walkIdx++)
|
|
//{
|
|
// std::cout << "Executing walk " << walkIdx << "\n";
|
|
// for (int i = 0; i < 1; ++i)
|
|
// {
|
|
// std::cout << "Start of iteration " << i << "\n";
|
|
|
|
// tmp = run(Settings::data.CurrentPath, walkIdx, evaluationName);
|
|
// statsMedian.add(tmp.getMedian());
|
|
// statsAVG.add(tmp.getAvg());
|
|
// statsSTD.add(tmp.getStdDev());
|
|
// statsQuantil.add(tmp.getQuantile(0.75));
|
|
|
|
// std::cout << kalman_procNoiseDistStdDev << " " << kalman_procNoiseVelStdDev << std::endl;
|
|
// std::cout << "Iteration " << i << " completed" << std::endl;
|
|
|
|
// }
|
|
//}
|
|
|
|
|
|
// error.push_back({{ kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev, statsAVG.getAvg() }});
|
|
|
|
// auto minElement = std::min_element(error.begin(), error.end(), [](std::array<float, 3> a, std::array<float, 3> b) {
|
|
// return a[2] < b[2];
|
|
// });
|
|
|
|
// std::cout << "Current min error " << (*minElement)[2] << "\t Q(0)=\t" << (*minElement)[0] << "\t Q(1)=" << (*minElement)[1] << "\n";
|
|
|
|
// error_out << kalman_procNoiseDistStdDev << ";" << kalman_procNoiseVelStdDev << ";" << statsAVG.getAvg() << std::endl;
|
|
|
|
// // reset stats
|
|
// statsAVG.reset();
|
|
// statsMedian.reset();
|
|
// statsSTD.reset();
|
|
// statsQuantil.reset();
|
|
// }
|
|
//}
|
|
|
|
//auto minElement = std::min_element(error.begin(), error.end(), [](std::array<float, 3> a, std::array<float, 3> b) {
|
|
// return a[2] < b[2];
|
|
//});
|
|
|
|
//std::cout << "Global Min error " << (*minElement)[2] << "\t Q(0)=\t" << (*minElement)[0] << "\t Q(1)=" << (*minElement)[1] << "\n";
|
|
|
|
//error_out.close();
|
|
|
|
|
|
|
|
//std::this_thread::sleep_for(std::chrono::seconds(60));
|
|
|
|
}
|