This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
FtmPrologic/code/mainTrilat.cpp

261 lines
8.3 KiB
C++

#include "main.h"
#include <array>
#include <memory>
#include <thread>
#include <filesystem>
#include <chrono>
#include <iostream>
#include <Indoor/math/stats/Statistics.h>
#include <Indoor/floorplan/v2/FloorplanReader.h>
#include <Indoor/sensors/offline/FileReader.h>
#include <Indoor/sensors/offline/Sensors.h>
#include <Indoor/sensors/radio/model/LogDistanceModel.h>
#include <Indoor/geo/Heading.h>
#include <Indoor/geo/Point2.h>
#include <Indoor/data/Timestamp.h>
#include <Indoor/math/MovingAVG.h>
#include "Settings.h"
#include "Plotty.h"
#include "Plotta.h"
#include "trilateration.h"
#include "misc.h"
static CombinedStats<float> run(Settings::DataSetup setup, int walkIdx, std::string folder)
{
// reading file
Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(setup.map);
Offline::FileReader fr(setup.training[walkIdx]);
// ground truth
Interpolator<uint64_t, Point3> gtInterpolator = fr.getGroundTruthPath(map, setup.gtPath);
CombinedStats<float> errorStats;
//calculate distance of path
std::vector<Interpolator<uint64_t, Point3>::InterpolatorEntry> gtEntries = gtInterpolator.getEntries();
double distance = 0;
for (int i = 1; i < gtEntries.size(); ++i) {
distance += gtEntries[i].value.getDistance(gtEntries[i - 1].value);
}
std::cout << "Distance of Path: " << distance << std::endl;
// debug show
//MeshPlotter dbg;
//dbg.addFloors(map);
//dbg.addOutline(map);
//dbg.addMesh(mesh);
////dbg.addDijkstra(mesh);
//dbg.draw();
Plotty plot(map);
plot.buildFloorplan();
plot.setGroundTruth(setup.gtPath);
plot.setView(30, 0);
plot.plot();
Plotta::Plotta plotta("test", "C:\\Temp\\Plotta\\dataTrilat.py");
std::vector<Point2> apPositions{
Settings::data.CurrentPath.NUCs.at(Settings::NUC1).position.xy(),
Settings::data.CurrentPath.NUCs.at(Settings::NUC2).position.xy(),
Settings::data.CurrentPath.NUCs.at(Settings::NUC3).position.xy(),
Settings::data.CurrentPath.NUCs.at(Settings::NUC4).position.xy(),
};
plotta.add("apPos", apPositions);
std::vector<WifiMeas> data = filterOfflineData(fr);
const bool UseFTM = false;
const int movAvgWnd = 10;
std::array<MovingAVG<float>, 4> movAvgsFtm { {movAvgWnd,movAvgWnd,movAvgWnd,movAvgWnd} };
std::array<MovingAVG<float>, 4> movAvgsRssi { {movAvgWnd,movAvgWnd,movAvgWnd,movAvgWnd} };
std::vector<float> errorValuesFtm, errorValuesRssi;
std::vector<int> timestamps;
std::vector<Point2> gtPath, estPathFtm, estPathRssi;
for (const WifiMeas& wifi : data)
{
Point2 gtPos = gtInterpolator.get(static_cast<uint64_t>(wifi.ts.ms())).xy();
plot.setGroundTruth(Point3(gtPos.x, gtPos.y, 0.1));
gtPath.push_back(gtPos);
float distErrorFtm = 0;
float distErrorRssi = 0;
//if (wifi.numSucessMeas() == 4)
{
// FTM
{
std::vector<float> avgDists;
for (size_t i = 0; i < 4; i++)
{
float dist = wifi.ftmDists[i];
if (!isnan(dist))
{
movAvgsFtm[i].add(dist);
}
if (movAvgsFtm[i].getNumUsed() == 0)
{
avgDists.push_back(0);
}
else
{
avgDists.push_back(movAvgsFtm[i].get());
}
}
Point2 estPos = Trilateration::calculateLocation2d(apPositions, avgDists);
plot.setCurEst(Point3(estPos.x, estPos.y, 0.1));
plot.addEstimationNode(Point3(estPos.x, estPos.y, 0.1));
// draw wifi ranges
for (size_t i = 0; i < 4; i++)
{
plot.addCircle(i + 1, apPositions[i], avgDists[i]);
}
// Error
distErrorFtm = gtPos.getDistance(estPos);
errorStats.ftm.add(distErrorFtm);
estPathFtm.push_back(estPos);
}
// RSSI
{
std::vector<float> avgDists;
for (size_t i = 0; i < 4; i++)
{
float dist = wifi.rssiDists[i];
if (!isnan(dist))
{
movAvgsRssi[i].add(dist);
}
if (movAvgsRssi[i].getNumUsed() == 0)
{
avgDists.push_back(0);
}
else
{
avgDists.push_back(movAvgsRssi[i].get());
}
}
Point2 estPos = Trilateration::calculateLocation2d(apPositions, avgDists);
plot.addEstimationNode2(Point3(estPos.x, estPos.y, 0.1));
// Error
distErrorRssi = gtPos.getDistance(estPos);
errorStats.rssi.add(distErrorRssi);
estPathRssi.push_back(estPos);
}
//std::cout << wifi.ts.ms() << " " << distError << "\n";
errorValuesFtm.push_back(distErrorFtm);
errorValuesRssi.push_back(distErrorRssi);
timestamps.push_back(wifi.ts.ms());
plotta.add("t", timestamps);
plotta.add("errorFtm", errorValuesFtm);
plotta.add("errorRssi", errorValuesRssi);
plotta.frame();
}
plot.plot();
//Sleep(250);
printf("");
}
plotta.add("gtPath", gtPath);
plotta.add("estPathFtm", estPathFtm);
plotta.add("estPathRssi", estPathRssi);
plotta.frame();
std::cout << "Walk error:" << "\n";
std::cout << "[m] " << " mean \t stdDev median" << "\n";
std::cout << "FTM " << errorStats.ftm.getAvg() << "\t" << errorStats.ftm.getStdDev() << "\t" << errorStats.ftm.getMedian() << "\n";
std::cout << "RSSI " << errorStats.rssi.getAvg() << "\t" << errorStats.rssi.getStdDev() << "\t" << errorStats.rssi.getMedian() << "\n";
std::cout << std::endl;
return errorStats;
}
int mainTrilat(int argc, char** argv)
{
// global stats
CombinedStats<float> statsAVG;
CombinedStats<float> statsMedian;
CombinedStats<float> statsSTD;
CombinedStats<float> statsQuantil;
CombinedStats<float> tmp;
std::string evaluationName = "prologic/tmp";
for (size_t walkIdx = 0; walkIdx < 6; walkIdx++)
{
std::cout << "Executing walk " << walkIdx << "\n";
for (int i = 0; i < 1; ++i)
{
std::cout << "Start of iteration " << i << "\n";
tmp = run(Settings::data.CurrentPath, walkIdx, evaluationName);
statsAVG.ftm.add(tmp.ftm.getAvg());
statsMedian.ftm.add(tmp.ftm.getMedian());
statsSTD.ftm.add(tmp.ftm.getStdDev());
statsQuantil.ftm.add(tmp.ftm.getQuantile(0.75));
statsAVG.rssi.add(tmp.rssi.getAvg());
statsMedian.rssi.add(tmp.rssi.getMedian());
statsSTD.rssi.add(tmp.rssi.getStdDev());
statsQuantil.rssi.add(tmp.rssi.getQuantile(0.75));
std::cout << "Iteration " << i << " completed" << std::endl;
}
}
std::cout << "==========================================================" << std::endl;
std::cout << "Average of all statistical data FTM: " << std::endl;
std::cout << "Median: " << statsMedian.ftm.getAvg() << std::endl;
std::cout << "Average: " << statsAVG.ftm.getAvg() << std::endl;
std::cout << "Standard Deviation: " << statsSTD.ftm.getAvg() << std::endl;
std::cout << "75 Quantil: " << statsQuantil.ftm.getAvg() << std::endl;
std::cout << "==========================================================" << std::endl;
std::cout << "==========================================================" << std::endl;
std::cout << "Average of all statistical data RSSI: " << std::endl;
std::cout << "Median: " << statsMedian.rssi.getAvg() << std::endl;
std::cout << "Average: " << statsAVG.rssi.getAvg() << std::endl;
std::cout << "Standard Deviation: " << statsSTD.rssi.getAvg() << std::endl;
std::cout << "75 Quantil: " << statsQuantil.rssi.getAvg() << std::endl;
std::cout << "==========================================================" << std::endl;
return 0;
}