This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
FtmPrologic/code/trilateration.cpp
2020-01-28 11:33:17 +01:00

250 lines
9.7 KiB
C++

#include "trilateration.h"
#include <cmath>
#include <iostream>
#include <Eigen/Eigen>
#include <unsupported/Eigen/NonLinearOptimization>
#include <unsupported/Eigen/NumericalDiff>
namespace Trilateration
{
// see: https://github.com/Wayne82/Trilateration/blob/master/source/Trilateration.cpp
Point2 peusodInverse2d(const std::vector<Point2>& positions, const std::vector<float>& distances)
{
// To locate position on a 2d plan, have to get at least 3 becaons,
// otherwise return false.
if (positions.size() < 3)
assert(false);
if (positions.size() != distances.size())
assert(false);
// Define the matrix that we are going to use
size_t count = positions.size();
size_t rows = count * (count - 1) / 2;
Eigen::MatrixXd m(rows, 2);
Eigen::VectorXd b(rows);
// Fill in matrix according to the equations
size_t row = 0;
double x1, x2, y1, y2, r1, r2;
for (size_t i = 0; i < count; ++i) {
for (size_t j = i + 1; j < count; ++j) {
x1 = positions[i].x, y1 = positions[i].y;
x2 = positions[j].x, y2 = positions[j].y;
r1 = distances[i];
r2 = distances[j];
m(row, 0) = x1 - x2;
m(row, 1) = y1 - y2;
b(row) = ((pow(x1, 2) - pow(x2, 2)) +
(pow(y1, 2) - pow(y2, 2)) -
(pow(r1, 2) - pow(r2, 2))) / 2;
row++;
}
}
// Then calculate to solve the equations, using the least square solution
//Eigen::Vector2d location = m.jacobiSvd(Eigen::ComputeThinU | Eigen::ComputeThinV).solve(b);
Eigen::Vector2d pseudoInv = (m.transpose()*m).inverse() * m.transpose() *b;
return Point2(pseudoInv.x(), pseudoInv.y());
}
Point3 pseudoInverse3d(const std::vector<Point3>& positions, const std::vector<float>& distances)
{
// To locate position in a 3D space, have to get at least 4 becaons
if (positions.size() < 4)
assert(false);
if (positions.size() != distances.size())
assert(false);
// Define the matrix that we are going to use
size_t count = positions.size();
size_t rows = count * (count - 1) / 2;
Eigen::MatrixXd m(rows, 3);
Eigen::VectorXd b(rows);
// Fill in matrix according to the equations
size_t row = 0;
double x1, x2, y1, y2, z1, z2, r1, r2;
for (size_t i = 0; i < count; ++i) {
for (size_t j = i + 1; j < count; ++j) {
x1 = positions[i].x, y1 = positions[i].y, z1 = positions[i].z;
x2 = positions[j].x, y2 = positions[j].y, z2 = positions[j].z;
r1 = distances[i];
r2 = distances[j];
m(row, 0) = x1 - x2;
m(row, 1) = y1 - y2;
m(row, 2) = z1 - z2;
b(row) = ((pow(x1, 2) - pow(x2, 2)) +
(pow(y1, 2) - pow(y2, 2)) +
(pow(z1, 2) - pow(z2, 2)) -
(pow(r1, 2) - pow(r2, 2))) / 2;
row++;
}
}
// Then calculate to solve the equations, using the least square solution
Eigen::Vector3d location = m.jacobiSvd(Eigen::ComputeThinU | Eigen::ComputeThinV).solve(b);
return Point3(location.x(), location.y(), location.z());
}
// Generic functor
// See http://eigen.tuxfamily.org/index.php?title=Functors
// C++ version of a function pointer that stores meta-data about the function
template<typename _Scalar, int NX = Eigen::Dynamic, int NY = Eigen::Dynamic>
struct Functor
{
// Information that tells the caller the numeric type (eg. double) and size (input / output dim)
typedef _Scalar Scalar;
enum { // Required by numerical differentiation module
InputsAtCompileTime = NX,
ValuesAtCompileTime = NY
};
// Tell the caller the matrix sizes associated with the input, output, and jacobian
typedef Eigen::Matrix<Scalar, InputsAtCompileTime, 1> InputType;
typedef Eigen::Matrix<Scalar, ValuesAtCompileTime, 1> ValueType;
typedef Eigen::Matrix<Scalar, ValuesAtCompileTime, InputsAtCompileTime> JacobianType;
// Local copy of the number of inputs
int m_inputs, m_values;
// Two constructors:
Functor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {}
Functor(int inputs, int values) : m_inputs(inputs), m_values(values) {}
// Get methods for users to determine function input and output dimensions
int inputs() const { return m_inputs; }
int values() const { return m_values; }
};
struct DistanceFunction : Functor<double>
{
private:
const std::vector<Point2>& positions;
const std::vector<float>& distances;
public:
DistanceFunction(const std::vector<Point2>& positions, const std::vector<float>& distances)
: Functor<double>(positions.size(), positions.size()), positions(positions), distances(distances)
{}
int operator()(const Eigen::VectorXd &x, Eigen::VectorXd &fvec) const
{
const Point2 p(x(0), x(1));
for (size_t i = 0; i < positions.size(); i++)
{
fvec(i) = p.getDistance(positions[i]) - distances[i];
}
return 0;
}
};
struct DistanceFunctionDiff : public Eigen::NumericalDiff<DistanceFunction>
{
DistanceFunctionDiff(const DistanceFunction& functor)
: Eigen::NumericalDiff<DistanceFunction>(functor, 1.0e-6)
{}
};
std::string lmStatusToString(const Eigen::LevenbergMarquardtSpace::Status stat)
{
switch (stat)
{
// Non-Erros
case Eigen::LevenbergMarquardtSpace::NotStarted:
return "Not started. No Error.";
case Eigen::LevenbergMarquardtSpace::Running:
return "Running. No Error.";
// Error
case Eigen::LevenbergMarquardtSpace::ImproperInputParameters:
return "Error. Invalid input parameters";
case Eigen::LevenbergMarquardtSpace::UserAsked:
return "Error in user-implemented evaluation or gradient computation.";
// Warnings
case Eigen::LevenbergMarquardtSpace::RelativeReductionTooSmall:
return "WARN: The cosine of the angle between fvec and any column of the jacobian is at most gtol in absolute value.";
case Eigen::LevenbergMarquardtSpace::RelativeErrorTooSmall:
return "WARN: Relative error too small.";
case Eigen::LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall:
return "WARN: Relative error and reduction too small.";
case Eigen::LevenbergMarquardtSpace::CosinusTooSmall:
return "WARN: The cosine of the angle between fvec and any column of the jacobian is at most gtol in absolute value.";
case Eigen::LevenbergMarquardtSpace::TooManyFunctionEvaluation:
return "WARN: Too many function evaluations done.";
case Eigen::LevenbergMarquardtSpace::FtolTooSmall:
return "WARN: ftol is too small. No further reduction in the sum of squares is possible";
case Eigen::LevenbergMarquardtSpace::XtolTooSmall:
return "WARN: xtol is too small. No further improvement in the approximate solution x is possible.";
case Eigen::LevenbergMarquardtSpace::GtolTooSmall:
return "WARN: gtol is too small.fvec is orthogonal to the columns of the jacobian to machine precision.";
default:
return "Unkown status. Status=" + std::to_string(static_cast<int>(stat));
}
}
Point2 levenbergMarquardt(const std::vector<Point2>& positions, const std::vector<float>& distances)
{
const Point2 pseudoInvApprox = peusodInverse2d(positions, distances);
Eigen::Vector2d startVal;
startVal << pseudoInvApprox.x, pseudoInvApprox.y;
//startVal << 0, 0;
DistanceFunction functor(positions, distances);
DistanceFunctionDiff numDiff(functor);
Eigen::LevenbergMarquardt<DistanceFunctionDiff, double> lm(numDiff);
// Parameters
// factor : Sets the step bound for the diagonal shift
// maxfev : Sets the maximum number of function evaluation
// ftol : Sets the tolerance for the norm of the vector function
// xtol : Sets the tolerance for the norm of the solution vector
// gtol : Sets the tolerance for the norm of the gradient of the error vector
// epsilon: Sets the error precision
lm.parameters.maxfev = 200;
lm.parameters.xtol = 1.0e-10;
Eigen::VectorXd z = startVal;
auto status = lm.minimize(z);
std::cout << "Levenberg Marquardt" << std::endl;
std::cout << "status: " << lmStatusToString(status) << std::endl;
std::cout << "iter count: " << lm.iter << std::endl;
std::cout << "levenMarq: " << z.transpose() << std::endl;
std::cout << "pseudoInv: " << startVal.transpose() << std::endl;
const Point2 levenPos(z(0), z(1));
// Compute error
double errPseudo = 0;
double errLeven = 0;
for (size_t i = 0; i < positions.size(); i++)
{
double d1 = pseudoInvApprox.getDistance(positions[i]) - distances[i];
errPseudo += d1 * d1;
double d2 = levenPos.getDistance(positions[i]) - distances[i];
errLeven += d2 * d2;
}
//assert(errLeven <= errPseudo);
std::cout << "err pseud: " << errPseudo << std::endl;
std::cout << "err leven: " << errLeven << std::endl << std::endl;
return levenPos;
}
}