This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
FtmPrologic/code/main.cpp

326 lines
12 KiB
C++

//#include "main.h"
#include "mesh.h"
#include "filter.h"
#include "Settings.h"
#include "meshPlotter.h"
#include "Plotty.h"
#include <memory>
#include <thread>
#include <filesystem>
#include <chrono>
#include <Indoor/floorplan/v2/FloorplanReader.h>
#include <Indoor/sensors/offline/FileReader.h>
#include <Indoor/geo/Heading.h>
#include <Indoor/geo/Point2.h>
#include <Indoor/sensors/imu/TurnDetection.h>
#include <Indoor/sensors/imu/StepDetection.h>
#include <Indoor/sensors/imu/PoseDetection.h>
#include <Indoor/sensors/imu/MotionDetection.h>
#include <Indoor/sensors/pressure/RelativePressure.h>
#include <Indoor/data/Timestamp.h>
#include <Indoor/math/stats/Statistics.h>
#include "FtmKalman.h"
#include "mainFtm.h"
#include <sys/stat.h>
using namespace std::chrono_literals;
static Stats::Statistics<float> run(Settings::DataSetup setup, int numFile, std::string folder) {
// reading file
std::string currDir = std::filesystem::current_path().string();
Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(setup.map);
Offline::FileReader fr(setup.training[numFile]);
// ground truth
std::vector<int> gtPath = setup.gtPath;
Interpolator<uint64_t, Point3> gtInterpolator = fr.getGroundTruthPath(map, gtPath);
Stats::Statistics<float> errorStats;
//calculate distance of path
std::vector<Interpolator<uint64_t, Point3>::InterpolatorEntry> gtEntries = gtInterpolator.getEntries();
double distance = 0;
for(int i = 1; i < gtEntries.size(); ++i){
distance += gtEntries[i].value.getDistance(gtEntries[i-1].value);
}
std::cout << "Distance of Path: " << distance << std::endl;
// error file
const long int t = static_cast<long int>(time(NULL));
auto evalDir = std::experimental::filesystem::path(Settings::errorDir);
evalDir.append(folder);
if (!std::experimental::filesystem::exists(evalDir)) {
std::experimental::filesystem::create_directory(evalDir);
}
std::ofstream errorFile;
errorFile.open (evalDir.string() + "/" + std::to_string(numFile) + "_" + std::to_string(t) + ".csv");
// wifi
auto kalmanMap = std::make_shared<std::unordered_map<MACAddress, Kalman>>();
kalmanMap->insert({ Settings::NUC1, Kalman(1, setup.NUCs.at(Settings::NUC1).kalman_measStdDev) });
kalmanMap->insert({ Settings::NUC2, Kalman(2, setup.NUCs.at(Settings::NUC2).kalman_measStdDev) });
kalmanMap->insert({ Settings::NUC3, Kalman(3, setup.NUCs.at(Settings::NUC3).kalman_measStdDev) });
kalmanMap->insert({ Settings::NUC4, Kalman(4, setup.NUCs.at(Settings::NUC4).kalman_measStdDev) });
// mesh
NM::NavMeshSettings set;
set.maxQuality_m = 0.10; // because of narrow hallways and small rooms reduce min. triangle size (default is 0.2)
MyNavMesh mesh;
MyNavMeshFactory fac(&mesh, set);
fac.build(map);
const Point3 srcPath0(9.8, 24.9, 0); // fixed start pos
// add shortest-path to destination
//const Point3 dst(51, 45, 1.7);
//const Point3 dst(25, 45, 0);
//NM::NavMeshDijkstra::stamp<MyNavMeshTriangle>(mesh, dst);
// debug show
//MeshPlotter dbg;
//dbg.addFloors(map);
//dbg.addOutline(map);
//dbg.addMesh(mesh);
////dbg.addDijkstra(mesh);
//dbg.draw();
Plotty plot(map);
plot.buildFloorplan();
plot.setGroundTruth(gtPath);
plot.setView(30, 0);
plot.plot();
// particle-filter
const int numParticles = 5000;
//auto init = std::make_unique<MyPFInitFixed>(&mesh, srcPath0); // known position
auto init = std::make_unique<MyPFInitUniform>(&mesh); // uniform distribution
auto eval = std::make_unique<MyPFEval>();
eval->kalmanMap = kalmanMap;
auto trans = std::make_unique<MyPFTrans>(mesh);
//auto trans = std::make_unique<MyPFTransStatic>();
auto resample = std::make_unique<SMC::ParticleFilterResamplingSimple<MyState>>();
auto estimate = std::make_unique<SMC::ParticleFilterEstimationWeightedAverage<MyState>>();
// setup
MyFilter pf(numParticles, std::move(init));
pf.setEvaluation(std::move(eval));
pf.setTransition(std::move(trans));
pf.setResampling(std::move(resample));
pf.setEstimation(std::move(estimate));
pf.setNEffThreshold(0.85);
// sensors
MyControl ctrl;
MyObservation obs;
StepDetection sd;
PoseDetection pd;
TurnDetection td(&pd);
RelativePressure relBaro;
ActivityDetector act;
relBaro.setCalibrationTimeframe( Timestamp::fromMS(5000) );
Timestamp lastTimestamp = Timestamp::fromMS(0);
int i = 0;
// parse each sensor-value within the offline data
for (const Offline::Entry& e : fr.getEntries()) {
const Timestamp ts = Timestamp::fromMS(e.ts);
if (e.type == Offline::Sensor::WIFI_FTM) {
auto ftm = fr.getWifiFtm()[e.idx].data;
float ftm_offset = Settings::data.CurrentPath.NUCs.at(ftm.getAP().getMAC()).ftm_offset;
float ftmDist = ftm.getFtmDist() + ftm_offset; // in m; plus static offset
auto& kalman = kalmanMap->at(ftm.getAP().getMAC());
float predictDist = kalman.predict(ts, ftmDist);
ftm.setFtmDist(predictDist);
obs.wifi.insert_or_assign(ftm.getAP().getMAC(), ftm);
} else if (e.type == Offline::Sensor::WIFI) {
//obs.wifi = fr.getWiFiGroupedByTime()[e.idx].data;
//ctrl.wifi = fr.getWiFiGroupedByTime()[e.idx].data;
} else if (e.type == Offline::Sensor::ACC) {
if (sd.add(ts, fr.getAccelerometer()[e.idx].data)) {
++ctrl.numStepsSinceLastEval;
}
const Offline::TS<AccelerometerData>& _acc = fr.getAccelerometer()[e.idx];
pd.addAccelerometer(ts, _acc.data);
//simpleActivity walking / standing
act.add(ts, fr.getAccelerometer()[e.idx].data);
} else if (e.type == Offline::Sensor::GYRO) {
const Offline::TS<GyroscopeData>& _gyr = fr.getGyroscope()[e.idx];
const float delta_gyro = td.addGyroscope(ts, _gyr.data);
ctrl.headingChangeSinceLastEval += delta_gyro;
} else if (e.type == Offline::Sensor::BARO) {
relBaro.add(ts, fr.getBarometer()[e.idx].data);
obs.relativePressure = relBaro.getPressureRealtiveToStart();
obs.sigmaPressure = relBaro.getSigma();
//simpleActivity stairs up / down
act.add(ts, fr.getBarometer()[e.idx].data);
obs.activity = act.get();
}
if (ctrl.numStepsSinceLastEval > 0)
//if (ts - lastTimestamp >= Timestamp::fromMS(500))
//if (obs.wifi.size() == 4)
{
obs.currentTime = ts;
ctrl.currentTime = ts;
// if(ctrl.numStepsSinceLastEval > 0){
// pf.updateTransitionOnly(&ctrl);
// }
MyState est = pf.update(&ctrl, obs); //pf.updateEvaluationOnly(obs);
ctrl.afterEval();
Point3 gtPos = gtInterpolator.get(static_cast<uint64_t>(ts.ms())) + Point3(0,0,0.1);
lastTimestamp = ts;
ctrl.lastEstimate = est.pos.pos;
// draw wifi ranges
for (auto& ftm : obs.wifi)
{
int nucid = Settings::data.CurrentPath.NUCs.at(ftm.second.getAP().getMAC()).ID;
if (nucid == 1)
{
Point3 apPos = Settings::data.CurrentPath.NUCs.find(ftm.first)->second.position;
//plot.addCircle(nucid, apPos.xy(), ftm.second.getFtmDist());
}
}
obs.wifi.clear();
//plot
//dbg.showParticles(pf.getParticles());
//dbg.setCurPos(est.pos.pos);
//dbg.setGT(gtPos);
//dbg.addEstimationNode(est.pos.pos);
//dbg.addGroundTruthNode(gtPos);
//dbg.setTimeInMinute(static_cast<int>(ts.sec()) / 60, static_cast<int>(static_cast<int>(ts.sec())%60));
//dbg.draw();
plot.showParticles(pf.getParticles());
plot.setCurEst(est.pos.pos);
plot.setGroundTruth(gtPos);
plot.addEstimationNode(est.pos.pos);
plot.setActivity((int) act.get());
//plot.splot.getView().setEnabled(false);
//plot.splot.getView().setCamera(0, 0);
//plot.splot.getView().setEqualXY(true);
plot.plot();
//std::this_thread::sleep_for(500ms);
// error calc
// float err_m = gtPos.getDistance(est.pos.pos);
// errorStats.add(err_m);
// errorFile << ts.ms() << " " << err_m << "\n";
//error calc with penalty for wrong floor
double errorFactor = 3.0;
Point3 gtPosError = Point3(gtPos.x, gtPos.y, errorFactor * gtPos.z);
Point3 estError = Point3(est.pos.pos.x, est.pos.pos.y, errorFactor * est.pos.pos.z);
float err_m = gtPosError.getDistance(estError);
errorStats.add(err_m);
errorFile << ts.ms() << " " << err_m << "\n";
}
}
// get someting on console
std::cout << "Statistical Analysis Filtering: " << std::endl;
std::cout << "Median: " << errorStats.getMedian() << " Average: " << errorStats.getAvg() << " Std: " << errorStats.getStdDev() << std::endl;
// save the statistical data in file
errorFile << "========================================================== \n";
errorFile << "Average of all statistical data: \n";
errorFile << "Median: " << errorStats.getMedian() << "\n";
errorFile << "Average: " << errorStats.getAvg() << "\n";
errorFile << "Standard Deviation: " << errorStats.getStdDev() << "\n";
errorFile << "75 Quantil: " << errorStats.getQuantile(0.75) << "\n";
errorFile.close();
return errorStats;
}
int main(int argc, char** argv)
{
mainFtm(argc, argv);
return 0;
Stats::Statistics<float> statsAVG;
Stats::Statistics<float> statsMedian;
Stats::Statistics<float> statsSTD;
Stats::Statistics<float> statsQuantil;
Stats::Statistics<float> tmp;
std::string evaluationName = "prologic/tmp";
for(int i = 0; i < 2; ++i){
tmp = run(Settings::data.CurrentPath, 0, evaluationName);
statsMedian.add(tmp.getMedian());
statsAVG.add(tmp.getAvg());
statsSTD.add(tmp.getStdDev());
statsQuantil.add(tmp.getQuantile(0.75));
std::cout << "Iteration " << i << " completed" << std::endl;
}
std::cout << "==========================================================" << std::endl;
std::cout << "Average of all statistical data: " << std::endl;
std::cout << "Median: " << statsMedian.getAvg() << std::endl;
std::cout << "Average: " << statsAVG.getAvg() << std::endl;
std::cout << "Standard Deviation: " << statsSTD.getAvg() << std::endl;
std::cout << "75 Quantil: " << statsQuantil.getAvg() << std::endl;
std::cout << "==========================================================" << std::endl;
//EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS
std::ofstream finalStatisticFile;
finalStatisticFile.open (Settings::errorDir + evaluationName + ".csv", std::ios_base::app);
finalStatisticFile << "========================================================== \n";
finalStatisticFile << "Average of all statistical data: \n";
finalStatisticFile << "Median: " << statsMedian.getAvg() << "\n";
finalStatisticFile << "Average: " << statsAVG.getAvg() << "\n";
finalStatisticFile << "Standard Deviation: " << statsSTD.getAvg() << "\n";
finalStatisticFile << "75 Quantil: " << statsQuantil.getAvg() << "\n";
finalStatisticFile << "========================================================== \n";
finalStatisticFile.close();
//std::this_thread::sleep_for(std::chrono::seconds(60));
}