This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
FtmPrologic/code/mainProb.cpp
2019-09-18 10:20:07 +02:00

326 lines
11 KiB
C++

#include "main.h"
#include <array>
#include <memory>
#include <thread>
#include <filesystem>
#include <chrono>
#include <iostream>
#include <Indoor/math/stats/Statistics.h>
#include <Indoor/floorplan/v2/FloorplanReader.h>
#include <Indoor/sensors/offline/FileReader.h>
#include <Indoor/sensors/offline/Sensors.h>
#include <Indoor/sensors/radio/model/LogDistanceModel.h>
#include <Indoor/geo/Heading.h>
#include <Indoor/geo/Point2.h>
#include <Indoor/data/Timestamp.h>
#include <Indoor/math/MovingAVG.h>
#include "FtmKalman.h"
#include "Settings.h"
#include "Plotty.h"
#include "Plotta.h"
#include "misc.h"
static float kalman_procNoiseDistStdDev = 1.2f; // standard deviation of distance for process noise
static float kalman_procNoiseVelStdDev = 0.1f; // standard deviation of velocity for process noise
static void poorMansKDE(const BBox3& bbox, float sigma, std::array<float, 4> dist, std::array<Point2, 4> apPos, std::vector<std::pair<Point2, float>>& density, std::pair<Point2, float>& maxElem)
{
density.clear();
const float stepsize = 0.2;
const float minX = bbox.getMin().x - 5;
const float minY = bbox.getMin().y - 5;
const float maxX = bbox.getMax().x + 5;
const float maxY = bbox.getMax().y + 5;
for (float y = minY; y < maxY; y += stepsize)
{
for (float x = minX; x < maxX; x += stepsize)
{
const Point2 pos(x, y);
float P = 1.0f;
for (size_t i = 0; i < 4; i++)
{
// TODO: Was mit nan machen?
if (!isnan(dist[i]))
{
float d = pos.getDistance(apPos[i]) - dist[i];
float p = Distribution::Normal<float>::getProbability(0, sigma, d);
P *= p;
}
}
density.push_back({ pos, P });
}
}
auto maxElement = std::max_element(density.begin(), density.end(), [](std::pair<Point2, float> a, std::pair<Point2, float> b) {
return a.second < b.second;
});
maxElem = *maxElement;
}
static CombinedStats<float> run(Settings::DataSetup setup, int walkIdx, std::string folder)
{
// reading file
Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(setup.map);
Offline::FileReader fr(setup.training[walkIdx]);
// ground truth
std::vector<int> gtPath = setup.gtPath;
Interpolator<uint64_t, Point3> gtInterpolator = fr.getGroundTruthPath(map, gtPath);
CombinedStats<float> errorStats;
//calculate distance of path
std::vector<Interpolator<uint64_t, Point3>::InterpolatorEntry> gtEntries = gtInterpolator.getEntries();
double gtTotalDistance = 0;
Stats::Statistics<double> gtWalkingSpeed;
for (int i = 1; i < gtEntries.size(); ++i) {
double distance = gtEntries[i].value.getDistance(gtEntries[i - 1].value);
double timeDiff = static_cast<double>(gtEntries[i].key - gtEntries[i - 1].key);
double walkingSpeed = distance / (timeDiff/1000.0f); // m / s
gtWalkingSpeed.add(walkingSpeed);
gtTotalDistance += distance;
}
std::cout << "Distance of Path: " << gtTotalDistance << std::endl;
std::cout << "GT walking speed: " << gtWalkingSpeed.getAvg() << "m/s (" << gtWalkingSpeed.getAvg()*3.6f << "km/h)" << std::endl;
// debug show
//MeshPlotter dbg;
//dbg.addFloors(map);
//dbg.addOutline(map);
//dbg.addMesh(mesh);
////dbg.addDijkstra(mesh);
//dbg.draw();
Plotty plot(map);
plot.buildFloorplan();
plot.setGroundTruth(gtPath);
plot.setView(30, 0);
plot.plot();
// wifi
std::array<Kalman, 4> ftmKalmanFilters{
Kalman(1, setup.NUCs.at(Settings::NUC1).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev),
Kalman(2, setup.NUCs.at(Settings::NUC2).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev),
Kalman(3, setup.NUCs.at(Settings::NUC3).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev),
Kalman(4, setup.NUCs.at(Settings::NUC4).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev)
};
std::array<Point2, 4> apPositions{
Settings::data.CurrentPath.NUCs.at(Settings::NUC1).position.xy(),
Settings::data.CurrentPath.NUCs.at(Settings::NUC2).position.xy(),
Settings::data.CurrentPath.NUCs.at(Settings::NUC3).position.xy(),
Settings::data.CurrentPath.NUCs.at(Settings::NUC4).position.xy(),
};
std::vector<WifiMeas> data = filterOfflineData(fr);
const float sigma = 3.5;
const int movAvgWnd = 15;
std::array<MovingAVG<float>, 4> movAvgsFtm{ {movAvgWnd,movAvgWnd,movAvgWnd,movAvgWnd} };
std::array<MovingAVG<float>, 4> movAvgsRssi{ {movAvgWnd,movAvgWnd,movAvgWnd,movAvgWnd} };
std::vector<float> errorValuesFtm, errorValuesRssi;
std::vector<int> timestamps;
for (const WifiMeas& wifi : data)
{
Plotta::Plotta test("test", "C:\\Temp\\Plotta\\probData.py");
Point2 gtPos = gtInterpolator.get(static_cast<uint64_t>(wifi.ts.ms())).xy();
plot.setGroundTruth(Point3(gtPos.x, gtPos.y, 0.1));
float distErrorFtm = 0;
float distErrorRssi = 0;
//if (wifi.numSucessMeas() == 4)
{
// FTM
{
std::array<float, 4> dists = wifi.ftmDists;
if (Settings::UseKalman)
{
std::cout << "Using Kalman" << "\n";
for (size_t i = 0; i < 4; i++)
{
if (!isnan(dists[i]))
{
dists[i] = ftmKalmanFilters[i].predict(wifi.ts, dists[i]);
}
}
}
BBox3 bbox = FloorplanHelper::getBBox(map);
std::vector<std::pair<Point2, float>> density;
std::pair<Point2, float> maxElement;
poorMansKDE(bbox, sigma, dists, apPositions, density, maxElement);
Point2 estPos = maxElement.first;
plot.setCurEst(Point3(estPos.x, estPos.y, 0.1));
plot.addEstimationNode(Point3(estPos.x, estPos.y, 0.1));
// Error
distErrorFtm = gtPos.getDistance(estPos);
errorStats.ftm.add(distErrorFtm);
//std::vector<float> densityX, densityY, densityZ;
//for (const auto& item : density)
//{
// densityX.push_back(item.first.x);
// densityY.push_back(item.first.y);
// densityZ.push_back(item.second);
//}
//test.add("densityX", densityX);
//test.add("densityY", densityY);
//test.add("densityZ", densityZ);
}
// RSSI
{
std::array<float, 4> dists = wifi.rssiDists;
if (Settings::UseKalman)
{
for (size_t i = 0; i < 4; i++)
{
if (!isnan(dists[i]))
{
dists[i] = ftmKalmanFilters[i].predict(wifi.ts, dists[i]);
}
}
}
BBox3 bbox = FloorplanHelper::getBBox(map);
std::vector<std::pair<Point2, float>> density;
std::pair<Point2, float> maxElement;
poorMansKDE(bbox, sigma, dists, apPositions, density, maxElement);
Point2 estPos = maxElement.first;
plot.setCurEst(Point3(estPos.x, estPos.y, 0.1));
plot.addEstimationNode2(Point3(estPos.x, estPos.y, 0.1));
// Error
distErrorRssi = gtPos.getDistance(estPos);
errorStats.rssi.add(distErrorRssi);
//std::vector<float> densityX, densityY, densityZ;
//for (const auto& item : density)
//{
// densityX.push_back(item.first.x);
// densityY.push_back(item.first.y);
// densityZ.push_back(item.second);
//}
//test.add("densityX", densityX);
//test.add("densityY", densityY);
//test.add("densityZ", densityZ);
}
//std::cout << wifi.ts.ms() << " " << distError << "\n";
errorValuesFtm.push_back(distErrorFtm);
errorValuesRssi.push_back(distErrorRssi);
timestamps.push_back(wifi.ts.ms());
test.add("t", timestamps);
test.add("errorFtm", errorValuesFtm);
test.add("errorRssi", errorValuesRssi);
test.frame();
}
plot.plot();
//Sleep(250);
printf("");
}
std::cout << "Walk error:" << "\n";
std::cout << "[m] " << std::setw(10) << "mean" << std::setw(10) << "stdDev" << std::setw(10) << "median" << "\n";
std::cout << "FTM " << std::setw(10) << errorStats.ftm.getAvg() << std::setw(10) << errorStats.ftm.getStdDev() << std::setw(10) << errorStats.ftm.getMedian() << "\n";
std::cout << "RSSI " << std::setw(10) << errorStats.rssi.getAvg() << std::setw(10) << errorStats.rssi.getStdDev() << std::setw(10) << errorStats.rssi.getMedian() << "\n";
std::cout << std::endl;
return errorStats;
}
int mainProp(int argc, char** argv)
{
// global stats
CombinedStats<float> statsAVG;
CombinedStats<float> statsMedian;
CombinedStats<float> statsSTD;
CombinedStats<float> statsQuantil;
CombinedStats<float> tmp;
std::string evaluationName = "prologic/tmp";
for (size_t walkIdx = 0; walkIdx < 6; walkIdx++)
{
std::cout << "Executing walk " << walkIdx << "\n";
for (int i = 0; i < 1; ++i)
{
std::cout << "Start of iteration " << i << "\n";
tmp = run(Settings::data.CurrentPath, walkIdx, evaluationName);
statsAVG.ftm.add(tmp.ftm.getAvg());
statsMedian.ftm.add(tmp.ftm.getMedian());
statsSTD.ftm.add(tmp.ftm.getStdDev());
statsQuantil.ftm.add(tmp.ftm.getQuantile(0.75));
statsAVG.rssi.add(tmp.rssi.getAvg());
statsMedian.rssi.add(tmp.rssi.getMedian());
statsSTD.rssi.add(tmp.rssi.getStdDev());
statsQuantil.rssi.add(tmp.rssi.getQuantile(0.75));
std::cout << "Iteration " << i << " completed" << std::endl;
}
}
std::cout << "==========================================================" << std::endl;
std::cout << "Average of all statistical data FTM: " << std::endl;
std::cout << "Median: " << statsMedian.ftm.getAvg() << std::endl;
std::cout << "Average: " << statsAVG.ftm.getAvg() << std::endl;
std::cout << "Standard Deviation: " << statsSTD.ftm.getAvg() << std::endl;
std::cout << "75 Quantil: " << statsQuantil.ftm.getAvg() << std::endl;
std::cout << "==========================================================" << std::endl;
std::cout << "==========================================================" << std::endl;
std::cout << "Average of all statistical data RSSI: " << std::endl;
std::cout << "Median: " << statsMedian.rssi.getAvg() << std::endl;
std::cout << "Average: " << statsAVG.rssi.getAvg() << std::endl;
std::cout << "Standard Deviation: " << statsSTD.rssi.getAvg() << std::endl;
std::cout << "75 Quantil: " << statsQuantil.rssi.getAvg() << std::endl;
std::cout << "==========================================================" << std::endl;
return 0;
}