This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
FtmPrologic/code/mainProb.cpp

355 lines
11 KiB
C++
Raw Permalink Blame History

#include "main.h"
#include <array>
#include <memory>
#include <thread>
#include <filesystem>
#include <chrono>
#include <iostream>
#include <Indoor/math/stats/Statistics.h>
#include <Indoor/floorplan/v2/FloorplanReader.h>
#include <Indoor/sensors/offline/FileReader.h>
#include <Indoor/sensors/offline/Sensors.h>
#include <Indoor/sensors/radio/model/LogDistanceModel.h>
#include <Indoor/geo/Heading.h>
#include <Indoor/geo/Point2.h>
#include <Indoor/data/Timestamp.h>
#include <Indoor/math/MovingAVG.h>
#include "FtmKalman.h"
#include "Settings.h"
#include "Plotty.h"
#include "Plotta.h"
#include "misc.h"
static float kalman_procNoiseDistStdDev = 1.2f; // standard deviation of distance for process noise
static float kalman_procNoiseVelStdDev = 0.1f; // standard deviation of velocity for process noise
static void poorMansKDE(const BBox3& bbox, std::vector<std::pair<Point2, double>>& density, std::pair<Point2, double>& maxElem, const std::function<double(Point2 pt)>& evalProc)
{
density.clear();
const float stepsize = 0.2;
const float minX = bbox.getMin().x - 5;
const float minY = bbox.getMin().y - 5;
const float maxX = bbox.getMax().x + 5;
const float maxY = bbox.getMax().y + 5;
for (float y = minY; y < maxY; y += stepsize)
{
for (float x = minX; x < maxX; x += stepsize)
{
const Point2 pos(x, y);
double P = evalProc(pos);
density.push_back({ pos, P });
}
}
auto maxElement = std::max_element(density.begin(), density.end(), [](std::pair<Point2, double> a, std::pair<Point2, double> b) {
return a.second < b.second;
});
maxElem = *maxElement;
}
static void computeDensity(const BBox3& bbox, std::vector<std::pair<Point2, double>>& density, std::pair<Point2, double>& maxElem, const std::vector<WiFiMeasurement>& obs, bool useFtm, double sigma)
{
poorMansKDE(bbox, density, maxElem, [&obs, useFtm, sigma](Point2 pt) {
double p = 1.0;
for (const WiFiMeasurement& wifi : obs)
{
if (wifi.getNumSuccessfulMeasurements() < 3)
continue;
const MACAddress& mac = wifi.getAP().getMAC();
int nucIndex = Settings::nucIndex(mac);
// compute AP distance
const Point3 apPos = Settings::CurrentPath.nucInfo(nucIndex).position;
Point3 pos = Point3(pt.x, pt.y, 1.3); // smartphone h<>he
const float apDist = pos.getDistance(apPos);
double dist = 0;
if (useFtm)
{
// compute ftm distance
float ftm_offset = Settings::CurrentPath.NUCs.at(mac).ftm_offset;
float ftmDist = wifi.getFtmDist() + ftm_offset; // in m; plus static offset
dist = ftmDist;
}
else
{
// compute rssi distance
float rssi_pathloss = Settings::CurrentPath.NUCs.at(mac).rssi_pathloss;
float rssiDist = LogDistanceModel::rssiToDistance(-40, 2.25 /*rssi_pathloss*/, wifi.getRSSI());
dist = rssiDist;
}
if (dist > 0)
{
double d = apDist - dist;
double x = Distribution::Normal<double>::getProbability(0, 3.5, d);
p *= x;
}
}
return p;
});
}
static void plotDensity(Plotty& plot, std::vector<std::pair<Point2, double>>& density)
{
plot.particles.clear();
double min = std::numeric_limits<double>::max();
double max = std::numeric_limits<double>::min();
for (auto it = density.begin(); ; std::advance(it, 2))
{
if (it >= density.end())
break;
auto p = *it;
const K::GnuplotPoint3 p3(p.first.x, p.first.y, 0.1);
const double prob = std::pow(p.second, 0.25);
plot.particles.add(p3, prob);
if (prob > max) { max = prob; }
if (prob < min) { min = prob; }
}
plot.splot.getAxisCB().setRange(min, max + 0.000001);
}
static CombinedStats<float> run(Settings::DataSetup setup, int walkIdx, std::string folder)
{
// reading file
Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(setup.map);
Offline::FileReader fr(setup.training[walkIdx], setup.HasNanoSecondTimestamps);
// ground truth
std::vector<int> gtPath = setup.gtPath;
Interpolator<uint64_t, Point3> gtInterpolator = fr.getGroundTruthPath(map, gtPath);
CombinedStats<float> errorStats;
//calculate distance of path
std::vector<Interpolator<uint64_t, Point3>::InterpolatorEntry> gtEntries = gtInterpolator.getEntries();
double gtTotalDistance = 0;
Stats::Statistics<double> gtWalkingSpeed;
for (int i = 1; i < gtEntries.size(); ++i) {
double distance = gtEntries[i].value.getDistance(gtEntries[i - 1].value);
double timeDiff = static_cast<double>(gtEntries[i].key - gtEntries[i - 1].key);
double walkingSpeed = distance / (timeDiff/1000.0f); // m / s
gtWalkingSpeed.add(walkingSpeed);
gtTotalDistance += distance;
}
std::cout << "Distance of Path: " << gtTotalDistance << std::endl;
std::cout << "GT walking speed: " << gtWalkingSpeed.getAvg() << "m/s (" << gtWalkingSpeed.getAvg()*3.6f << "km/h)" << std::endl;
// debug show
//MeshPlotter dbg;
//dbg.addFloors(map);
//dbg.addOutline(map);
//dbg.addMesh(mesh);
////dbg.addDijkstra(mesh);
//dbg.draw();
Plotty plot(map);
plot.buildFloorplan();
plot.setGroundTruth(gtPath);
plot.setView(30, 0);
plot.plot();
// wifi
std::vector<WiFiMeasurement> obs;
Timestamp lastTimestamp = Timestamp::fromMS(0);
//const float sigma = 3.5;
//const int movAvgWnd = 15;
//std::array<MovingAVG<float>, 4> movAvgsFtm{ {movAvgWnd,movAvgWnd,movAvgWnd,movAvgWnd} };
//std::array<MovingAVG<float>, 4> movAvgsRssi{ {movAvgWnd,movAvgWnd,movAvgWnd,movAvgWnd} };
std::vector<float> errorValuesFtm, errorValuesRssi;
std::vector<int> timestamps;
for (const Offline::Entry& e : fr.getEntries())
{
if (e.type != Offline::Sensor::WIFI_FTM) {
continue;
}
// TIME
const Timestamp ts = Timestamp::fromMS(e.ts);
auto wifiFtm = fr.getWifiFtm()[e.idx].data;
obs.push_back(wifiFtm);
if (ts - lastTimestamp >= Timestamp::fromMS(500))
{
// Do update
Plotta::Plotta test("test", "C:\\Temp\\Plotta\\probData.py");
Point2 gtPos = gtInterpolator.get(static_cast<uint64_t>(ts.ms())).xy();
plot.setGroundTruth(Point3(gtPos.x, gtPos.y, 0.1));
float distErrorFtm = 0;
float distErrorRssi = 0;
// FTM
{
BBox3 bbox = FloorplanHelper::getBBox(map);
std::vector<std::pair<Point2, double>> density;
std::pair<Point2, double> maxElement;
computeDensity(bbox, density, maxElement, obs, true, 3.5);
Point2 estPos = maxElement.first;
//plot.addEstimationNode(Point3(estPos.x, estPos.y, 0.1));
plot.setCurEst(Point3(estPos.x, estPos.y, 0.1));
// Plot density
plotDensity(plot, density);
// Error
distErrorFtm = gtPos.getDistance(estPos);
errorStats.ftm.add(distErrorFtm);
}
// RSSI
{
BBox3 bbox = FloorplanHelper::getBBox(map);
std::vector<std::pair<Point2, double>> density;
std::pair<Point2, double> maxElement;
computeDensity(bbox, density, maxElement, obs, false, 8);
Point2 estPos = maxElement.first;
//plot.addEstimationNode2(Point3(estPos.x, estPos.y, 0.1));
// Plot density
//plotDensity(plot, density);
// Error
distErrorRssi = gtPos.getDistance(estPos);
errorStats.rssi.add(distErrorRssi);
}
// draw wifi ranges
plot.clearDistanceCircles();
for (size_t i = 0; i < obs.size(); i++)
{
WiFiMeasurement wifi2 = obs[i];
Point3 apPos = Settings::CurrentPath.nuc(wifi2.getAP().getMAC()).position;
K::GnuplotColor color;
switch (Settings::CurrentPath.nuc(wifi2.getAP().getMAC()).ID)
{
case 1: color = K::GnuplotColor::fromRGB(0, 255, 0); break;
case 2: color = K::GnuplotColor::fromRGB(0, 0, 255); break;
case 3: color = K::GnuplotColor::fromRGB(255, 255, 0); break;
default: color = K::GnuplotColor::fromRGB(255, 0, 0); break;
}
plot.addDistanceCircle(apPos.xy(), wifi2.getFtmDist(), color);
}
errorValuesFtm.push_back(distErrorFtm);
errorValuesRssi.push_back(distErrorRssi);
timestamps.push_back(ts.ms());
test.add("t", timestamps);
test.add("errorFtm", errorValuesFtm);
test.add("errorRssi", errorValuesRssi);
test.frame();
plot.plot();
//Sleep(250);
printf("");
lastTimestamp = ts;
obs.clear();
}
}
printErrorStats(errorStats);
return errorStats;
}
int mainProp(int argc, char** argv)
{
// global stats
CombinedStats<float> statsAVG;
CombinedStats<float> statsMedian;
CombinedStats<float> statsSTD;
CombinedStats<float> statsQuantil;
CombinedStats<float> tmp;
std::string evaluationName = "prologic/tmp";
for (size_t walkIdx = 0; walkIdx < Settings::CurrentPath.training.size(); walkIdx++)
{
std::cout << "Executing walk " << walkIdx << "\n";
for (int i = 0; i < 1; ++i)
{
std::cout << "Start of iteration " << i << "\n";
tmp = run(Settings::CurrentPath, walkIdx, evaluationName);
statsAVG.ftm.add(tmp.ftm.getAvg());
statsMedian.ftm.add(tmp.ftm.getMedian());
statsSTD.ftm.add(tmp.ftm.getStdDev());
statsQuantil.ftm.add(tmp.ftm.getQuantile(0.75));
statsAVG.rssi.add(tmp.rssi.getAvg());
statsMedian.rssi.add(tmp.rssi.getMedian());
statsSTD.rssi.add(tmp.rssi.getStdDev());
statsQuantil.rssi.add(tmp.rssi.getQuantile(0.75));
std::cout << "Iteration " << i << " completed" << std::endl;
}
}
std::cout << "==========================================================" << std::endl;
std::cout << "Average of all statistical data FTM: " << std::endl;
std::cout << "Median: " << statsMedian.ftm.getAvg() << std::endl;
std::cout << "Average: " << statsAVG.ftm.getAvg() << std::endl;
std::cout << "Standard Deviation: " << statsSTD.ftm.getAvg() << std::endl;
std::cout << "75 Quantil: " << statsQuantil.ftm.getAvg() << std::endl;
std::cout << "==========================================================" << std::endl;
std::cout << "==========================================================" << std::endl;
std::cout << "Average of all statistical data RSSI: " << std::endl;
std::cout << "Median: " << statsMedian.rssi.getAvg() << std::endl;
std::cout << "Average: " << statsAVG.rssi.getAvg() << std::endl;
std::cout << "Standard Deviation: " << statsSTD.rssi.getAvg() << std::endl;
std::cout << "75 Quantil: " << statsQuantil.rssi.getAvg() << std::endl;
std::cout << "==========================================================" << std::endl;
return 0;
}