#pragma once #include "mesh.h" #include "Settings.h" #include #include #include #include //#include #include #include #include #include #include #include #include //#include //#include //#include //#include //#include #include //#include #include #include #include #include #include #include "FtmKalman.h" struct MyState { /** the state's position (within the mesh) */ MyNavMeshLocation pos; /** the state's heading */ Heading heading; MyState() : pos(), heading(0) {;} MyState(Point3 p) : pos(p, nullptr), heading(0){;} MyState& operator += (const MyState& o) { pos.tria = nullptr; // impossible pos.pos += o.pos.pos; return *this; } MyState& operator /= (const double val) { pos.tria = nullptr; // impossible pos.pos /= val; return *this; } MyState operator * (const double val) const { MyState res; res.pos.pos = pos.pos * val; return res; } float getX(){ return pos.pos.x; } float getY() { return pos.pos.y; } float getZ() { return pos.pos.z; } float getBinValue(const int dim) const { switch (dim) { case 0: return this->pos.pos.x; case 1: return this->pos.pos.y; case 2: return this->pos.pos.z; case 3: return this->heading.getRAD(); } throw "cant find this value within the bin"; } }; struct MyControl { int numStepsSinceLastEval = 0; float headingChangeSinceLastEval = 0; void afterEval() { numStepsSinceLastEval = 0; headingChangeSinceLastEval = 0; } //wifi std::map wifi; //time Timestamp currentTime; //last estimation Point3 lastEstimate = Point3(26, 43, 7.5); }; struct MyObservation { // pressure float sigmaPressure = 0.10f; float relativePressure = 0; //wifi std::unordered_map wifi; //time Timestamp currentTime; //activity Activity activity; }; class MyPFInitUniform : public SMC::ParticleFilterInitializer { const MyNavMesh* mesh; public: MyPFInitUniform(const MyNavMesh* mesh) : mesh(mesh) { ; } virtual void initialize(std::vector>& particles) override { /** random position and heading within the mesh */ Distribution::Uniform dHead(0, 2*M_PI); MyNavMeshRandom rnd = mesh->getRandom(); for (SMC::Particle& p : particles) { p.state.pos = rnd.draw(); p.state.heading = dHead.draw(); p.weight = 1.0 / particles.size(); } } }; class MyPFInitFixed : public SMC::ParticleFilterInitializer { const MyNavMesh* mesh; const Point3 pos; public: MyPFInitFixed(const MyNavMesh* mesh, const Point3 pos) : mesh(mesh), pos(pos) { ; } virtual void initialize(std::vector>& particles) override { /** random position and heading within the mesh */ Distribution::Uniform dHead(0, 2*M_PI); for (SMC::Particle& p : particles) { p.state.pos = mesh->getLocation(pos); p.state.heading = 1.5*M_PI;// dHead.draw(); p.weight = 1.0 / particles.size(); } } }; class MyPFTransStatic : public SMC::ParticleFilterTransition{ void transition(std::vector>& particles, const MyControl* control) override { // nop } }; class MyPFTrans : public SMC::ParticleFilterTransition { //using MyNavMeshWalk = NM::NavMeshWalkSimple; //using MyNavMeshWalk = NM::NavMeshWalkWifiRegional; //using MyNavMeshWalk = NM::NavMeshWalkUnblockable; //using MyNavMeshWalk = NM::NavMeshWalkKLD; using MyNavMeshWalk = NM::NavMeshWalkSinkOrSwim; MyNavMeshWalk walker; const double lambda = 0.03; public: //std::vector listRadiusSub; MyPFTrans(MyNavMesh& mesh) : walker(mesh) { // how to evaluate drawn points walker.addEvaluator(new NM::WalkEvalHeadingStartEndNormal(0.04)); walker.addEvaluator(new NM::WalkEvalDistance(0.1)); //walker.addEvaluator(new NM::WalkEvalApproachesTarget(0.9)); // 90% for particles moving towards the target } void transition(std::vector>& particles, const MyControl* control) override { // walking and heading random Distribution::Normal dStepSizeFloor(0.60, 0.1); Distribution::Normal dStepSizeStair(0.35, 0.1); Distribution::Normal dHeading(0.0, 0.1); #pragma omp parallel for num_threads(3) for (int i = 0; i < particles.size(); ++i) { SMC::Particle& p = particles[i]; // how to walk MyNavMeshWalkParams params; params.heading = p.state.heading + control->headingChangeSinceLastEval + dHeading.draw(); params.numSteps = control->numStepsSinceLastEval; params.start = p.state.pos; params.stepSizes.stepSizeFloor_m = dStepSizeFloor.draw(); params.stepSizes.stepSizeStair_m = dStepSizeStair.draw(); if(params.stepSizes.stepSizeFloor_m < 0.1 || params.stepSizes.stepSizeStair_m < 0.1){ params.stepSizes.stepSizeFloor_m = 0.1; params.stepSizes.stepSizeStair_m = 0.1; } double deltaUnblockable = 0.01; // walk MyNavMeshWalk::ResultEntry res = walker.getOne(params); //MyNavMeshWalk::ResultEntry res = walker.getOne(params, kld, lambda, qualityWifi); // assign back to particle's state p.weight *= res.probability; p.state.pos = res.location; p.state.heading = res.heading; } // reset the control (0 steps, 0 delta-heading) //control->afterEval(); } }; class MyPFEval : public SMC::ParticleFilterEvaluation { //TODO: add this to transition probability double getStairProb(const SMC::Particle& p, const Activity act) { const float kappa = 0.75; switch (act) { case Activity::WALKING: if (p.state.pos.tria->getType() == (int) NM::NavMeshType::FLOOR_INDOOR) {return kappa;} if (p.state.pos.tria->getType() == (int) NM::NavMeshType::DOOR) {return kappa;} if (p.state.pos.tria->getType() == (int) NM::NavMeshType::STAIR_LEVELED) {return kappa;} {return 1-kappa;} case Activity::WALKING_UP: case Activity::WALKING_DOWN: if (p.state.pos.tria->getType() == (int) NM::NavMeshType::STAIR_SKEWED) {return kappa;} if (p.state.pos.tria->getType() == (int) NM::NavMeshType::STAIR_LEVELED) {return kappa;} if (p.state.pos.tria->getType() == (int) NM::NavMeshType::ELEVATOR) {return kappa;} {return 1-kappa;} } return 1.0; } public: // FRANK MyPFEval() { }; bool assignProps = false; std::shared_ptr> kalmanMap; virtual double evaluation(std::vector>& particles, const MyObservation& observation) override { double sum = 0; //#pragma omp parallel for num_threads(3) for (int i = 0; i < particles.size(); ++i) { SMC::Particle& p = particles[i]; double pFtm = 1.0; if (observation.wifi.size() == 0) { printf(""); } for (auto& wifi : observation.wifi) { if ( (true && wifi.second.getAP().getMAC() == Settings::NUC1) || (true && wifi.second.getAP().getMAC() == Settings::NUC2) || (true && wifi.second.getAP().getMAC() == Settings::NUC3) || (true && wifi.second.getAP().getMAC() == Settings::NUC4) ) { float rssi_pathloss = Settings::data.CurrentPath.NUCs.at(wifi.second.getAP().getMAC()).rssi_pathloss; float rssiDist = LogDistanceModel::rssiToDistance(-40, rssi_pathloss, wifi.second.getRSSI()); float ftmDist = wifi.second.getFtmDist(); Point3 apPos = Settings::data.CurrentPath.NUCs.find(wifi.first)->second.position; Point3 particlePos = p.state.pos.pos; particlePos.z = 1.3; // smartphone höhe float apDist = particlePos.getDistance(apPos); if (Settings::UseKalman) { auto kalman = kalmanMap->at(wifi.second.getAP().getMAC()); pFtm *= Distribution::Normal::getProbability(ftmDist, std::sqrt(kalman.P(0,0)), apDist); } else { pFtm *= Distribution::Normal::getProbability(apDist, 3.5, ftmDist); //pFtm *= Distribution::Region::getProbability(apDist, 3.5/2, ftmDist); } } } double prob = pFtm; if (assignProps) p.weight = prob; // p.weight *= prob else p.weight *= prob; #pragma omp atomic sum += prob; } return sum; } }; using MyFilter = SMC::ParticleFilter;