Particle filter is now using a fixed time interval as step
This commit is contained in:
@@ -6,6 +6,7 @@
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
#include <iostream>
|
||||
#include <array>
|
||||
|
||||
namespace Plotta
|
||||
{
|
||||
@@ -39,6 +40,8 @@ namespace Plotta
|
||||
{
|
||||
// send data
|
||||
std::ofstream stream;
|
||||
stream.exceptions(stream.exceptions() | std::ios::failbit);
|
||||
|
||||
stream.open(dataFile);
|
||||
|
||||
std::time_t t = std::time(nullptr);
|
||||
@@ -126,6 +129,12 @@ namespace Plotta
|
||||
return writeNumpyArray(stream, list.begin(), list.end());
|
||||
}
|
||||
|
||||
template<typename T, size_t S>
|
||||
plottastream& operator<<(plottastream& stream, const std::array<T, S>& list)
|
||||
{
|
||||
return writeNumpyArray(stream, list.begin(), list.end());
|
||||
}
|
||||
|
||||
|
||||
template<typename T>
|
||||
static plottastream& operator<<(plottastream& stream, const T& value)
|
||||
|
||||
@@ -184,6 +184,20 @@ public:
|
||||
|
||||
splot.getObjects().set(id, obj);
|
||||
|
||||
}
|
||||
|
||||
void addCircle(int id, const Point2& center, float radius, const K::GnuplotColor& strokeColor)
|
||||
{
|
||||
auto c = K::GnuplotCoordinate2(center.x, center.y, K::GnuplotCoordinateSystem::FIRST);
|
||||
auto r = K::GnuplotCoordinate1(radius, K::GnuplotCoordinateSystem::FIRST);
|
||||
|
||||
K::GnuplotFill fill(K::GnuplotFillStyle::EMPTY, K::GnuplotColor::fromRGB(0, 0, 0));
|
||||
K::GnuplotStroke stroke(K::GnuplotDashtype::SOLID, 1, strokeColor);
|
||||
|
||||
K::GnuplotObjectCircle* obj = new K::GnuplotObjectCircle(c, r, fill, stroke);
|
||||
|
||||
splot.getObjects().set(id, obj);
|
||||
|
||||
}
|
||||
|
||||
void addBBoxes(const BBoxes3& boxes, const K::GnuplotColor& c) {
|
||||
|
||||
@@ -94,6 +94,7 @@ namespace Settings {
|
||||
const std::string mapDir = "../map/";
|
||||
const std::string dataDir = "../measurements/data/";
|
||||
const std::string errorDir = "../measurements/error/";
|
||||
const std::string plotDataDir = "../plots/data/";
|
||||
|
||||
const bool UseKalman = true;
|
||||
|
||||
@@ -147,6 +148,11 @@ namespace Settings {
|
||||
{
|
||||
return NUCs.at(nucFromIndex(idx));
|
||||
}
|
||||
|
||||
NUCSettings nuc(const MACAddress& mac) const
|
||||
{
|
||||
return NUCs.at(mac);
|
||||
}
|
||||
};
|
||||
|
||||
/** all configured datasets */
|
||||
|
||||
@@ -5,6 +5,7 @@
|
||||
#include <omp.h>
|
||||
#include <array>
|
||||
|
||||
#include <Indoor/Assertions.h>
|
||||
#include <Indoor/geo/Heading.h>
|
||||
#include <Indoor/math/distribution/Uniform.h>
|
||||
#include <Indoor/math/distribution/Normal.h>
|
||||
@@ -114,8 +115,8 @@ struct MyObservation {
|
||||
|
||||
//wifi
|
||||
std::unordered_map<MACAddress, WiFiMeasurement> wifi; // deprecated
|
||||
std::array<float, 4> dists;
|
||||
std::array<float, 4> sigmas; // from kalman
|
||||
|
||||
std::vector<WiFiMeasurement> ftm;
|
||||
|
||||
//time
|
||||
Timestamp currentTime;
|
||||
@@ -263,34 +264,85 @@ struct MyPFEval : public SMC::ParticleFilterEvaluation<MyState, MyObservation> {
|
||||
MyPFEval() { };
|
||||
|
||||
bool assignProps = false;
|
||||
std::shared_ptr<std::unordered_map<MACAddress, Kalman>> ftmKalmanFilters;
|
||||
|
||||
virtual double evaluation(std::vector<SMC::Particle<MyState>>& particles, const MyObservation& observation) override {
|
||||
|
||||
double sum = 0;
|
||||
|
||||
//#pragma omp parallel for num_threads(3)
|
||||
#pragma omp parallel for num_threads(3)
|
||||
for (int i = 0; i < particles.size(); ++i) {
|
||||
SMC::Particle<MyState>& p = particles[i];
|
||||
|
||||
double pFtm = 1.0;
|
||||
|
||||
for (size_t i = 0; i < 4; i++)
|
||||
for (WiFiMeasurement wifi : observation.ftm)
|
||||
{
|
||||
float dist = observation.dists[i];
|
||||
const float sigma = isnan(observation.sigmas[i]) ? 3.5 : observation.sigmas[i];
|
||||
|
||||
if (!isnan(dist))
|
||||
if (wifi.getNumSuccessfulMeasurements() < 3)
|
||||
{
|
||||
Point3 apPos = Settings::data.CurrentPath.nucInfo(i).position;
|
||||
Point3 particlePos = p.state.pos.pos;
|
||||
particlePos.z = 1.3; // smartphone höhe
|
||||
float apDist = particlePos.getDistance(apPos);
|
||||
continue;
|
||||
}
|
||||
|
||||
double x = Distribution::Normal<double>::getProbability(dist, std::sqrt(sigma), apDist);
|
||||
pFtm *= x;
|
||||
const MACAddress& mac = wifi.getAP().getMAC();
|
||||
int nucIndex = Settings::nucIndex(mac);
|
||||
|
||||
const Point3 apPos = Settings::data.CurrentPath.nucInfo(nucIndex).position;
|
||||
Point3 particlePos = p.state.pos.pos;
|
||||
particlePos.z = 1.3; // smartphone höhe
|
||||
const float apDist = particlePos.getDistance(apPos);
|
||||
|
||||
// compute ftm distance
|
||||
float ftm_offset = Settings::data.CurrentPath.NUCs.at(mac).ftm_offset;
|
||||
float ftmDist = wifi.getFtmDist() + ftm_offset; // in m; plus static offset
|
||||
|
||||
float rssi_pathloss = Settings::data.CurrentPath.NUCs.at(mac).rssi_pathloss;
|
||||
float rssiDist = LogDistanceModel::rssiToDistance(-40, rssi_pathloss, wifi.getRSSI());
|
||||
|
||||
|
||||
if (ftmDist > 0)
|
||||
{
|
||||
double sigma = wifi.getFtmDistStd()*wifi.getFtmDistStd(); // 3.5; // TODO
|
||||
|
||||
if (sigma == 0)
|
||||
{
|
||||
sigma = 38*38;
|
||||
}
|
||||
|
||||
if (Settings::UseKalman)
|
||||
{
|
||||
Kalman& kalman = ftmKalmanFilters->at(mac);
|
||||
ftmDist = kalman.predict(observation.currentTime, ftmDist);
|
||||
sigma = kalman.P(0, 0);
|
||||
|
||||
//Assert::isTrue(sigma > 0, "sigma");
|
||||
if (sigma <= 0)
|
||||
{
|
||||
sigma = 38 * 38;
|
||||
}
|
||||
|
||||
double x = Distribution::Normal<double>::getProbability(ftmDist, std::sqrt(sigma), apDist);
|
||||
|
||||
if (x > 1e-90)
|
||||
{
|
||||
pFtm *= x;
|
||||
Assert::isTrue(pFtm != 0, "zero prob");
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
double x = Distribution::Normal<double>::getProbability(ftmDist, std::sqrt(sigma), apDist);
|
||||
|
||||
if (x > 1e-90)
|
||||
{
|
||||
pFtm *= x;
|
||||
|
||||
Assert::isTrue(pFtm != 0, "zero prob");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
double prob = pFtm;
|
||||
|
||||
if (assignProps)
|
||||
|
||||
159
code/main.cpp
159
code/main.cpp
@@ -5,6 +5,7 @@
|
||||
#include "Settings.h"
|
||||
#include "meshPlotter.h"
|
||||
#include "Plotty.h"
|
||||
#include "Plotta.h"
|
||||
|
||||
#include <array>
|
||||
#include <memory>
|
||||
@@ -216,12 +217,11 @@ static CombinedStats<float> run(Settings::DataSetup setup, int walkIdx, std::str
|
||||
|
||||
|
||||
// wifi
|
||||
std::array<Kalman, 4> ftmKalmanFilters{
|
||||
Kalman(1, setup.NUCs.at(Settings::NUC1).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev),
|
||||
Kalman(2, setup.NUCs.at(Settings::NUC2).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev),
|
||||
Kalman(3, setup.NUCs.at(Settings::NUC3).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev),
|
||||
Kalman(4, setup.NUCs.at(Settings::NUC4).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev)
|
||||
};
|
||||
auto kalmanMap = std::make_shared<std::unordered_map<MACAddress, Kalman>>();
|
||||
kalmanMap->insert({ Settings::NUC1, Kalman(1, setup.NUCs.at(Settings::NUC1).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev) });
|
||||
kalmanMap->insert({ Settings::NUC2, Kalman(2, setup.NUCs.at(Settings::NUC2).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev) });
|
||||
kalmanMap->insert({ Settings::NUC3, Kalman(3, setup.NUCs.at(Settings::NUC3).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev) });
|
||||
kalmanMap->insert({ Settings::NUC4, Kalman(4, setup.NUCs.at(Settings::NUC4).kalman_measStdDev, kalman_procNoiseDistStdDev, kalman_procNoiseVelStdDev) });
|
||||
|
||||
std::cout << "Optimal wifi parameters for " << setup.training[walkIdx] << "\n";
|
||||
optimizeWifiParameters(fr, gtInterpolator);
|
||||
@@ -257,12 +257,14 @@ static CombinedStats<float> run(Settings::DataSetup setup, int walkIdx, std::str
|
||||
//auto init = std::make_unique<MyPFInitFixed>(&mesh, srcPath0); // known position
|
||||
auto init = std::make_unique<MyPFInitUniform>(&mesh); // uniform distribution
|
||||
auto eval = std::make_unique<MyPFEval>();
|
||||
eval->ftmKalmanFilters = kalmanMap;
|
||||
|
||||
auto trans = std::make_unique<MyPFTransRandom>();
|
||||
//auto trans = std::make_unique<MyPFTransStatic>();
|
||||
|
||||
auto resample = std::make_unique<SMC::ParticleFilterResamplingSimple<MyState>>();
|
||||
auto estimate = std::make_unique<SMC::ParticleFilterEstimationWeightedAverage<MyState>>();
|
||||
//auto estimate = std::make_unique<SMC::ParticleFilterEstimationWeightedAverage<MyState>>();
|
||||
auto estimate = std::make_unique<SMC::ParticleFilterEstimationMax<MyState>>();
|
||||
|
||||
// setup
|
||||
MyFilter pf(numParticles, std::move(init));
|
||||
@@ -277,60 +279,51 @@ static CombinedStats<float> run(Settings::DataSetup setup, int walkIdx, std::str
|
||||
MyObservation obs;
|
||||
|
||||
Timestamp lastTimestamp = Timestamp::fromMS(0);
|
||||
|
||||
std::vector<WifiMeas> data = filterOfflineData(fr);
|
||||
|
||||
|
||||
std::vector<float> errorValuesFtm, errorValuesRssi;
|
||||
std::vector<int> timestamps;
|
||||
std::vector<std::array<float, 4>> gtDistances, ftmDistances, rssiDistances; // distance per AP
|
||||
|
||||
Plotta::Plotta errorPlot("errorPlot", Settings::plotDataDir + "errorData.py");
|
||||
Plotta::Plotta distsPlot("distsPlot", Settings::plotDataDir + "distances.py");
|
||||
|
||||
for (const WifiMeas& wifi : data)
|
||||
for (const Offline::Entry& e : fr.getEntries())
|
||||
{
|
||||
Point2 gtPos = gtInterpolator.get(static_cast<uint64_t>(wifi.ts.ms())).xy();
|
||||
plot.setGroundTruth(Point3(gtPos.x, gtPos.y, 0.1));
|
||||
if (e.type != Offline::Sensor::WIFI_FTM) {
|
||||
continue;
|
||||
}
|
||||
|
||||
Point3 estPos;
|
||||
float distErrorFtm = 0;
|
||||
float distErrorRssi = 0;
|
||||
// TIME
|
||||
const Timestamp ts = Timestamp::fromMS(e.ts);
|
||||
|
||||
// FTM
|
||||
auto wifiFtm = fr.getWifiFtm()[e.idx].data;
|
||||
obs.ftm.push_back(wifiFtm);
|
||||
|
||||
|
||||
if (ts - lastTimestamp >= Timestamp::fromMS(500))
|
||||
{
|
||||
std::array<float, 4> dists = wifi.ftmDists;
|
||||
std::array<float, 4> sigmas = {NAN, NAN, NAN, NAN };
|
||||
// Do update step
|
||||
Point2 gtPos = gtInterpolator.get(static_cast<uint64_t>(ts.ms())).xy();
|
||||
plot.setGroundTruth(Point3(gtPos.x, gtPos.y, 0.1));
|
||||
|
||||
for (size_t i = 0; i < 4; i++)
|
||||
{
|
||||
if (dists[i] <= 0)
|
||||
{
|
||||
dists[i] = NAN;
|
||||
}
|
||||
}
|
||||
gtDistances.push_back({ gtPos.getDistance(Settings::data.CurrentPath.nucInfo(0).position.xy()),
|
||||
gtPos.getDistance(Settings::data.CurrentPath.nucInfo(1).position.xy()),
|
||||
gtPos.getDistance(Settings::data.CurrentPath.nucInfo(2).position.xy()),
|
||||
gtPos.getDistance(Settings::data.CurrentPath.nucInfo(3).position.xy()) });
|
||||
|
||||
if (Settings::UseKalman)
|
||||
{
|
||||
for (size_t i = 0; i < 4; i++)
|
||||
{
|
||||
if (!isnan(dists[i]))
|
||||
{
|
||||
dists[i] = ftmKalmanFilters[i].predict(wifi.ts, dists[i]);
|
||||
sigmas[i] = ftmKalmanFilters[i].P(0, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
obs.dists = dists;
|
||||
obs.sigmas = sigmas;
|
||||
Point3 estPos;
|
||||
float distErrorFtm = 0;
|
||||
float distErrorRssi = 0;
|
||||
|
||||
// Run PF
|
||||
obs.currentTime = wifi.ts;
|
||||
ctrl.currentTime = wifi.ts;
|
||||
obs.currentTime = ts;
|
||||
ctrl.currentTime = ts;
|
||||
|
||||
MyState est = pf.update(&ctrl, obs);
|
||||
ctrl.afterEval();
|
||||
lastTimestamp = wifi.ts;
|
||||
lastTimestamp = ts;
|
||||
|
||||
estPos = est.pos.pos;
|
||||
|
||||
ctrl.lastEstimate = estPos;
|
||||
|
||||
plot.setCurEst(Point3(estPos.x, estPos.y, 0.1));
|
||||
@@ -341,35 +334,63 @@ static CombinedStats<float> run(Settings::DataSetup setup, int walkIdx, std::str
|
||||
errorStats.ftm.add(distErrorFtm);
|
||||
|
||||
// draw wifi ranges
|
||||
for (size_t i = 0; i < 4; i++)
|
||||
for (size_t i = 0; i < obs.ftm.size(); i++)
|
||||
{
|
||||
Point3 apPos = Settings::data.CurrentPath.nucInfo(i).position;
|
||||
plot.addCircle(1000+i, apPos.xy(), dists[i]);
|
||||
WiFiMeasurement wifi2 = obs.ftm[i];
|
||||
|
||||
Point3 apPos = Settings::data.CurrentPath.nuc(wifi2.getAP().getMAC()).position;
|
||||
|
||||
K::GnuplotColor color;
|
||||
switch (Settings::data.CurrentPath.nuc(wifi2.getAP().getMAC()).ID)
|
||||
{
|
||||
case 1: color = K::GnuplotColor::fromRGB(0, 255, 0); break;
|
||||
case 2: color = K::GnuplotColor::fromRGB(0, 0, 255); break;
|
||||
case 3: color = K::GnuplotColor::fromRGB(255, 255, 0); break;
|
||||
default: color = K::GnuplotColor::fromRGB(255, 0, 0); break;
|
||||
}
|
||||
|
||||
plot.addCircle(1000 + i, apPos.xy(), wifi2.getFtmDist(), color);
|
||||
}
|
||||
|
||||
obs.wifi.clear();
|
||||
obs.ftm.clear();
|
||||
|
||||
|
||||
errorValuesFtm.push_back(distErrorFtm);
|
||||
errorValuesRssi.push_back(distErrorRssi);
|
||||
timestamps.push_back(ts.ms());
|
||||
|
||||
// Error plot
|
||||
errorPlot.add("t", timestamps);
|
||||
errorPlot.add("errorFtm", errorValuesFtm);
|
||||
errorPlot.add("errorRssi", errorValuesRssi);
|
||||
errorPlot.frame();
|
||||
|
||||
// Distances plot
|
||||
//distsPlot.add("t", timestamps);
|
||||
//distsPlot.add("gtDists", gtDistances);
|
||||
//distsPlot.add("ftmDists", ftmDistances);
|
||||
//distsPlot.frame();
|
||||
|
||||
// Plotting
|
||||
plot.showParticles(pf.getParticles());
|
||||
plot.setCurEst(estPos);
|
||||
plot.setGroundTruth(Point3(gtPos.x, gtPos.y, 0.1));
|
||||
|
||||
plot.addEstimationNode(estPos);
|
||||
//plot.setActivity((int)act.get());
|
||||
//plot.splot.getView().setEnabled(false);
|
||||
//plot.splot.getView().setCamera(0, 0);
|
||||
//plot.splot.getView().setEqualXY(true);
|
||||
|
||||
plot.plot();
|
||||
}
|
||||
|
||||
errorValuesFtm.push_back(distErrorFtm);
|
||||
errorValuesRssi.push_back(distErrorRssi);
|
||||
timestamps.push_back(wifi.ts.ms());
|
||||
|
||||
// Plotting
|
||||
//plot.showParticles(pf.getParticles());
|
||||
plot.setCurEst(estPos);
|
||||
plot.setGroundTruth(Point3(gtPos.x, gtPos.y, 0.1));
|
||||
|
||||
plot.addEstimationNode(estPos);
|
||||
//plot.setActivity((int)act.get());
|
||||
//plot.splot.getView().setEnabled(false);
|
||||
//plot.splot.getView().setCamera(0, 0);
|
||||
//plot.splot.getView().setEqualXY(true);
|
||||
|
||||
plot.plot();
|
||||
//std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
||||
}
|
||||
|
||||
|
||||
|
||||
printErrorStats(errorStats);
|
||||
|
||||
//system("pause");
|
||||
|
||||
return errorStats;
|
||||
}
|
||||
|
||||
@@ -398,10 +419,10 @@ int main(int argc, char** argv)
|
||||
|
||||
std::string evaluationName = "prologic/tmp";
|
||||
|
||||
for (size_t walkIdx = 0; walkIdx < Settings::data.CurrentPath.training.size(); walkIdx++)
|
||||
for (size_t walkIdx = 0; walkIdx < 1 /*Settings::data.CurrentPath.training.size()*/; walkIdx++)
|
||||
{
|
||||
std::cout << "Executing walk " << walkIdx << "\n";
|
||||
for (int i = 0; i < 1; ++i)
|
||||
for (int i = 0; i < 5; ++i)
|
||||
{
|
||||
std::cout << "Start of iteration " << i << "\n";
|
||||
|
||||
|
||||
Reference in New Issue
Block a user