Moved pgf plots into own tex files

This commit is contained in:
2020-03-11 18:17:31 +01:00
parent df12e7ef15
commit 70eca36151
18 changed files with 186 additions and 84 deletions

View File

@@ -1,4 +1,4 @@
\documentclass[sensors,article,submit,moreauthors,pdftex,10pt,a4paper]{Definitions/mdpi} \documentclass[sensors,article,submit,moreauthors,pdftex,10pt,a4paper,showframe]{Definitions/mdpi}
\firstpage{1} \firstpage{1}
\makeatletter \makeatletter
@@ -32,15 +32,7 @@
\usepackage{subfig} \usepackage{subfig}
\usepackage{hyperref} \usepackage{hyperref}
\usepackage{booktabs} \usepackage{booktabs}
\usepackage{pgfplots}
\usepackage{tikzscale}
% pgfplot defaults
\pgfplotsset{compat=newest}
\pgfplotsset{legend cell align=left}
\pgfplotsset{major grid style=solid}
\pgfplotsset{minor grid style=dashed}
\pgfplotsset{every axis plot/.append style={line width=1pt}}
%\updates{yes} % If there is an update available, un-comment this line %\updates{yes} % If there is an update available, un-comment this line
@@ -78,7 +70,7 @@ $^{2}$ \quad University of Siegen - Pattern Recognition Group; marcin.grzegorzek
\newcommand{\mat}[1]{\vec{#1}} % the same as vec \newcommand{\mat}[1]{\vec{#1}} % the same as vec
% gfx include folder % gfx include folder
\graphicspath{ {./gfx/} {./gfx/placeholder/} } \graphicspath{ {./gfx/} {./gfx/placeholder/} {./plots/out/} }
% input stuff % input stuff
\input{misc/keywords} \input{misc/keywords}

View File

@@ -76,7 +76,7 @@ The \docLogDistance{} model can be reformulated to compute the distance $d_i$ ba
\end{equation} \end{equation}
Since $\mathcal{X}_{\sigma_i}$ is a Gaussian random variable, the logarithm of $d_i$ is normally distributed as well. Since $\mathcal{X}_{\sigma_i}$ is a Gaussian random variable, the logarithm of $d_i$ is normally distributed as well.
Consequently, the distance $d_i$ follows a log-normal distribution, $\ln{d_i} \sim \mathcal{N}(d_i^*, \sigma_{i,d}^2)$, where $d_i=\ln(10) \frac{P_0 - P_i}{10\mPLE}$ is the expected distance and $\sigma_{i,d}^2=\left( \frac{\ln(10)\sigma_i}{10\mPLE} \right)^2$ is the variance of the distance. Consequently, the distance $d_i$ follows a log-normal distribution, \ie $\ln\left(d_i\right) \sim \mathcal{N}\left(d_i^*, \ln\left(\sigma_{i}^2\right)\right)$, where $d_i^*=\ln(10) \frac{P_0 - P_i}{10\mPLE}$ is the expected distance and $\ln\left(\sigma_{i}^2\right)=\left( \frac{\ln(10)\sigma_i}{10\mPLE} \right)^2$ is the variance of the distance.
In free space the value of the path loss exponent is $\mPLE=2$. In free space the value of the path loss exponent is $\mPLE=2$.
In indoor scenarios $\mPLE$ accounts for the architecture around the AP, thus a single global factor is chosen for the whole building. In indoor scenarios $\mPLE$ accounts for the architecture around the AP, thus a single global factor is chosen for the whole building.

View File

@@ -175,23 +175,15 @@ However, the overall error of the device combinations is reasonable small and it
\begin{figure}[ht] \begin{figure}[ht]
\centering \centering
\begin{minipage}{.45\textwidth} \subfloat[]{\label{fig:DistMeasMeanNucPixel:a}\includegraphics[]{MeanDistPixel.pdf}}\hspace{0.5cm}
\centering \subfloat[]{\label{fig:DistMeasMeanNucPixel:b}\includegraphics[]{MeanDistIntel.pdf}}
\subfloat[]{\label{fig:DistMeasMeanNucPixel:a}\includegraphics[width=\textwidth]{plots/MeanDistPixel.pgf}} \par\medskip
\end{minipage}\hspace{.09\textwidth} \subfloat[]{\label{fig:DistMeasMeanNucPixel:c}\includegraphics[]{DistErrorCdf.pdf}}
\begin{minipage}{.45\textwidth} \caption{\ref{fig:DistMeasMeanNucPixel:a}, \ref{fig:DistMeasMeanNucPixel:b} show the mean distance per smartphone and per access point, respectively. \ref{fig:DistMeasMeanNucPixel:c} is the CDF of the measurement error for each device combination.}
\centering \label{fig:DistMeasMeanNucPixel}
\subfloat[]{\label{fig:DistMeasMeanNucPixel:b}\includegraphics[width=\textwidth]{plots/MeanDistIntel.pgf}}
\end{minipage}\par\medskip
\centering
\subfloat[]{\label{fig:DistMeasMeanNucPixel:c}%
\input{plots/DistErrorCdf.pgf}%
%\includegraphics[width=\textwidth,axisratio=2.3]{plots/DistErrorCdf.pgf}%
}
\caption{\ref{fig:DistMeasMeanNucPixel:a}, \ref{fig:DistMeasMeanNucPixel:b} show the mean distance per smartphone and per access point, respectively. \ref{fig:DistMeasMeanNucPixel:c} is the CDF of the measurement error for each device combination.}
\label{fig:DistMeasMeanNucPixel}
\end{figure} \end{figure}
% Smartphones und Intel cards in einer table % Smartphones und Intel cards in einer table
\begin{table}[ht] \begin{table}[ht]
\renewcommand{\arraystretch}{1.2} \renewcommand{\arraystretch}{1.2}
@@ -235,10 +227,21 @@ In the case of a fire outbreak these doors are automatically closed, but normall
Whenever such fire door is in the line of sight between the access point and smartphone the ranging error increases significantly. Whenever such fire door is in the line of sight between the access point and smartphone the ranging error increases significantly.
To quantify the impact of these fire doors on the FTM measurement we created two test setups as seen in \autoref{fig:BSTExp}. To quantify the impact of these fire doors on the FTM measurement we created two test setups as seen in \autoref{fig:BSTExp}.
In the first experiment as shown in \autoref{fig:BSTExp:a} we used the same access point position as in the test walks described below. In the first experiment, as shown in \autoref{fig:BSTExp:a}, we used the same access point position as in the test walks of the next section.
We placed seven measurement points on a circle so that most of these points are in the main hallway. We placed seven measurement points on a circle so that most of these points are located in the main hallway.
The radius of the circle is \SI{10}{m} and measure point 1,2 and 3 are located in the shadow of the fire door while points 4 to 7 are not. The radius of the circle is \SI{10}{m} and measure point 1 to 3 are located in the shadow of the fire door while points 4 to 7 are not.
At every point we placed the \pixelOld on a metal stand \SI{1.05}{m} above the floor and recored FTM distance measurements for \SI{60}{s} which results in around 255 distance measurements per point. At every point we placed the \pixelOld on a metal stand \SI{1.05}{m} above the floor and recored FTM distance measurements for \SI{60}{s} with one measurement every \SI{200}{ms}, which results in around 255 successful distance measurements per point.
%Note that this number is the mean of all successful measurements and the theoretical number of total measurements should be 300.
Note that this number differs from the theoretical possible 300 measurements because some measurements fail due to NLOS.
The results are depicted in \autoref{fig:Bst1Results}.
The error in the shadow area is larger compared to the points not shadowed by the fire door.
While the mean distances at point 1 and 2 are off by around \SI{10}{m} the error decreases monotonously for the following points.
Point 5 to 7 are not affected by the fire wall with a mean error of \SI{0.8}{m}.
But the deviation at point 4, which signal path is quite close to the door, is somewhat larger.
The distribution of the distances recorded at point 2 has two modes at \SI{16.55}{m} and \SI{34.12}{m}.
\begin{figure}[ht] \begin{figure}[ht]
\centering \centering
@@ -254,8 +257,8 @@ At every point we placed the \pixelOld on a metal stand \SI{1.05}{m} above the f
\label{fig:BSTExp} \label{fig:BSTExp}
\end{figure} \end{figure}
Notice that point 2, 3, 5 and 6 are located near a stairways with massive metal railings. Notice that point 2, 3, 5 and 6 are located near stairways with massive metal railings.
While it is expected that the stairways also disturb the measurement the measure points are actually included in the test walks. It is expected that the stairways also disturb the measurement additionally, but they are still of real interest because they are included in the test walks.
In order to evaluate the effect of the fire door exclusively, we build a second test setup at a corner office located next to a fire door. In order to evaluate the effect of the fire door exclusively, we build a second test setup at a corner office located next to a fire door.
@@ -264,29 +267,16 @@ The groundtruth was obtained by carefully measuring the distances to walls and t
\begin{figure}[ht] \begin{figure}[ht]
\centering \centering
\begin{minipage}{.55\textwidth} \subfloat[]{\label{fig:Bst1Results:a}\includegraphics[]{BSTPlot1.pdf}}\hspace{0.25cm}
\centering \subfloat[]{\label{fig:Bst1Results:b}\includegraphics[]{BSTPlot1Rssi.pdf}}
\subfloat[]{\label{fig:Bst1Results:a}%
\resizebox{\textwidth}{7cm}{\input{plots/BSTPlot1.pgf}}%
% \includegraphics[width=\textwidth, axisratio=1.5]{plots/BSTPlot1.pgf}%
}
\end{minipage}\hspace{.09\textwidth}
\begin{minipage}{.35\textwidth}
\centering
\subfloat[]{\label{fig:Bst1Results:b}%
\resizebox{\textwidth}{7cm}{\input{plots/BSTPlot1Rssi.pgf}}%
% \includegraphics[width=\textwidth, axisratio=0.86]{plots/BSTPlot1Rssi.pgf}%
}
\end{minipage}\par\medskip
\label{fig:Bst1Results}
\caption{} \caption{}
\label{fig:Bst1Results}
\end{figure} \end{figure}
\begin{figure}[ht] \begin{figure}[ht]
\centering \centering
\input{plots/BSTPlot2.pgf} \includegraphics[]{BSTPlot2.pdf}
% \includegraphics[width=\textwidth]{plots/BSTPlot2.pgf}
\label{fig:Bst2Results} \label{fig:Bst2Results}
\caption{Results for setup as seen in \figref{fig:BSTExp}. While the groundtruth distance only slightly varies (black line) the mean measured distance (blue line) varies greatly depending on the relative position to the fire door.} \caption{Results for setup as seen in \figref{fig:BSTExp}. While the groundtruth distance only slightly varies (black line) the mean measured distance (blue line) varies greatly depending on the relative position to the fire door.}
\end{figure} \end{figure}

View File

@@ -1,6 +1,11 @@
\documentclass[tikz]{standalone}
\input{../PlotPreamble.tex}
\begin{document}
\small
\begin{tikzpicture} \begin{tikzpicture}
\begin{axis}[ \begin{axis}[
scale only axis, width=9cm,
height=6.5cm
xlabel ={Measurement point}, xlabel ={Measurement point},
ylabel ={Distance in \si{\meter}}, ylabel ={Distance in \si{\meter}},
legend pos=north east, legend pos=north east,
@@ -13,8 +18,9 @@
ymin=0, ymin=0,
xtick={1,2,3,4,5,6,7}, xtick={1,2,3,4,5,6,7},
] ]
\addplot [color=black] table[x=X,y=GT,col sep=comma]{plots/data/BSTMean1.csv}; \addlegendentry{Groundtruth} \addplot [color=black] table[x=X,y=GT,col sep=comma]{../data/BSTMean1.csv}; \addlegendentry{Groundtruth}
\addplot [color=blue] table[x=X,y=MeanDist,col sep=comma]{plots/data/BSTMean1.csv}; \addlegendentry{Mean distance} \addplot [color=blue] table[x=X,y=MeanDist,col sep=comma]{../data/BSTMean1.csv}; \addlegendentry{Mean distance}
\addplot [color=orange, mark=x, only marks, mark size=1pt] table[x=X,y=Y,col sep=comma]{plots/data/BSTData1.csv}; \addlegendentry{Measured distance} \addplot [color=orange, mark=x, only marks, mark size=1.5pt, line width=0.5pt] table[x=X,y=Y,col sep=comma]{../data/BSTData1.csv}; \addlegendentry{Measured distance}
\end{axis} \end{axis}
\end{tikzpicture} \end{tikzpicture}
\end{document}

View File

@@ -1,7 +1,13 @@
\documentclass[tikz]{standalone}
\input{../PlotPreamble.tex}
\begin{document}
\small
\begin{tikzpicture} \begin{tikzpicture}
\begin{axis}[ \begin{axis}[
width=6.5cm,
height=6.5cm,
ybar, ybar,
scale only axis, xtick align=inside,
xlabel ={Measurement point}, xlabel ={Measurement point},
ylabel ={RSSI in \si{\dBm}}, ylabel ={RSSI in \si{\dBm}},
legend pos=north east, legend pos=north east,
@@ -14,6 +20,8 @@
%ymin=0, %ymin=0,
xtick={1,2,3,4,5,6,7}, xtick={1,2,3,4,5,6,7},
] ]
\addplot [blue, fill=blue] table[x=X,y=RSSI,col sep=comma]{plots/data/BSTMean1.csv}; \addplot [ta2skyblue, fill=ta2skyblue] table[x=X,y=RSSI,col sep=comma]{../data/BSTMean1.csv};
%\addplot [blue, mark=x] table[x=X,y=RSSI,col sep=comma]{../data/BSTMean1.csv};
\end{axis} \end{axis}
\end{tikzpicture} \end{tikzpicture}
\end{document}

View File

@@ -1,8 +1,11 @@
\documentclass[tikz]{standalone}
\input{../PlotPreamble.tex}
\begin{document}
\small
\begin{tikzpicture} \begin{tikzpicture}
\begin{axis}[ \begin{axis}[
scale only axis, width=15.7cm,
width=0.8\textwidth, height=6.5cm,
height=0.4\textwidth,
xlabel ={Measurement point}, xlabel ={Measurement point},
ylabel ={Distance in \si{\meter}}, ylabel ={Distance in \si{\meter}},
legend pos=north east, legend pos=north east,
@@ -14,8 +17,9 @@
%enlarge y limits=false, %enlarge y limits=false,
] ]
%\draw ({axis cs:7,0}|-{rel axis cs:0,1}) -- ({axis cs:7,0}|-{rel axis cs:0,0}); %\draw ({axis cs:7,0}|-{rel axis cs:0,1}) -- ({axis cs:7,0}|-{rel axis cs:0,0});
\addplot [color=black] table[x=X,y=GT,col sep=comma]{plots/data/BSTMean2.csv}; \addlegendentry{Groundtruth} \addplot [color=black] table[x=X,y=GT,col sep=comma]{../data/BSTMean2.csv}; \addlegendentry{Groundtruth}
\addplot [color=blue] table[x=X,y=MeanDist,col sep=comma]{plots/data/BSTMean2.csv}; \addlegendentry{Mean distance} \addplot [color=blue] table[x=X,y=MeanDist,col sep=comma]{../data/BSTMean2.csv}; \addlegendentry{Mean distance}
\addplot [color=orange, mark=x, only marks, mark size=1pt] table[x=X,y=Y,col sep=comma]{plots/data/BSTData2.csv}; \addlegendentry{Measured distance} \addplot [color=orange, mark=x, only marks, mark size=1.5pt, line width=0.5pt] table[x=X,y=Y,col sep=comma]{../data/BSTData2.csv}; \addlegendentry{Measured distance}
\end{axis} \end{axis}
\end{tikzpicture} \end{tikzpicture}
\end{document}

View File

@@ -1,3 +1,7 @@
\documentclass[tikz]{standalone}
\input{../PlotPreamble.tex}
\begin{document}
\small
\begin{tikzpicture} \begin{tikzpicture}
\definecolor{cdfPlot1}{rgb}{1,0,0} \definecolor{cdfPlot1}{rgb}{1,0,0}
\definecolor{cdfPlot2}{rgb}{1,0.25,0} \definecolor{cdfPlot2}{rgb}{1,0.25,0}
@@ -8,9 +12,8 @@
\definecolor{cdfPlot7}{rgb}{0,0.666,0.666} \definecolor{cdfPlot7}{rgb}{0,0.666,0.666}
\definecolor{cdfPlot8}{rgb}{0,1,0.5} \definecolor{cdfPlot8}{rgb}{0,1,0.5}
\begin{axis}[ \begin{axis}[
scale only axis, width=15.7cm,
width=0.8\textwidth, height=6.5cm,
height=0.4\textwidth,
xlabel ={Distance error in \si{\meter}}, xlabel ={Distance error in \si{\meter}},
ylabel ={CDF}, ylabel ={CDF},
legend pos=south east, legend pos=south east,
@@ -21,13 +24,14 @@
enlarge x limits=false, enlarge x limits=false,
enlarge y limits=false, enlarge y limits=false,
] ]
\addplot [color=cdfPlot1, dashed] table[x=X,y=Y,col sep=comma]{plots/data/1AC8260IntPixel2.csv}; \addlegendentry{AC 8260 int Pixel 2} \addplot [color=cdfPlot1, dashed] table[x=X,y=Y,col sep=comma]{../data/1AC8260IntPixel2.csv}; \addlegendentry{AC 8260 int Pixel 2}
\addplot [color=cdfPlot2, solid ] table[x=X,y=Y,col sep=comma]{plots/data/2AC8260IntPixel3.csv}; \addlegendentry{AC 8260 int Pixel 3} \addplot [color=cdfPlot2, solid ] table[x=X,y=Y,col sep=comma]{../data/2AC8260IntPixel3.csv}; \addlegendentry{AC 8260 int Pixel 3}
\addplot [color=cdfPlot3, dashed] table[x=X,y=Y,col sep=comma]{plots/data/3AC82602dBiPixel2.csv}; \addlegendentry{AC 8260 2dBi Pixel 2} \addplot [color=cdfPlot3, dashed] table[x=X,y=Y,col sep=comma]{../data/3AC82602dBiPixel2.csv}; \addlegendentry{AC 8260 2dBi Pixel 2}
\addplot [color=cdfPlot4, solid ] table[x=X,y=Y,col sep=comma]{plots/data/4AC82602dBiPixel3.csv}; \addlegendentry{AC 8260 2dBi Pixel 3} \addplot [color=cdfPlot4, solid ] table[x=X,y=Y,col sep=comma]{../data/4AC82602dBiPixel3.csv}; \addlegendentry{AC 8260 2dBi Pixel 3}
\addplot [color=cdfPlot5, dashed] table[x=X,y=Y,col sep=comma]{plots/data/5AC9462IntPixel2.csv}; \addlegendentry{AC 9462 int Pixel 2} \addplot [color=cdfPlot5, dashed] table[x=X,y=Y,col sep=comma]{../data/5AC9462IntPixel2.csv}; \addlegendentry{AC 9462 int Pixel 2}
\addplot [color=cdfPlot6, solid ] table[x=X,y=Y,col sep=comma]{plots/data/6AC9462IntPixel3.csv}; \addlegendentry{AC 9462 int Pixel 3} \addplot [color=cdfPlot6, solid ] table[x=X,y=Y,col sep=comma]{../data/6AC9462IntPixel3.csv}; \addlegendentry{AC 9462 int Pixel 3}
\addplot [color=cdfPlot7, dashed] table[x=X,y=Y,col sep=comma]{plots/data/7AC94622dBiPixel2.csv}; \addlegendentry{AC 9462 2dBi Pixel 2} \addplot [color=cdfPlot7, dashed] table[x=X,y=Y,col sep=comma]{../data/7AC94622dBiPixel2.csv}; \addlegendentry{AC 9462 2dBi Pixel 2}
\addplot [color=cdfPlot8, solid ] table[x=X,y=Y,col sep=comma]{plots/data/8AC94622dBiPixel3.csv}; \addlegendentry{AC 9462 2dBi Pixel 3} \addplot [color=cdfPlot8, solid ] table[x=X,y=Y,col sep=comma]{../data/8AC94622dBiPixel3.csv}; \addlegendentry{AC 9462 2dBi Pixel 3}
\end{axis} \end{axis}
\end{tikzpicture} \end{tikzpicture}
\end{document}

View File

@@ -1,5 +1,11 @@
\documentclass[tikz]{standalone}
\input{../PlotPreamble.tex}
\begin{document}
\small
\begin{tikzpicture} \begin{tikzpicture}
\begin{axis}[ \begin{axis}[
width=8cm,
height=8cm,
xlabel ={True distance in \si{\meter}}, xlabel ={True distance in \si{\meter}},
ylabel ={Mean distance in \si{\meter}}, ylabel ={Mean distance in \si{\meter}},
legend pos=north west, legend pos=north west,
@@ -15,15 +21,16 @@
] ]
% Groundtruth % Groundtruth
\addplot [color=black] % \addplot [color=black] %
table[x=GT,y=GT,col sep=comma]{plots/data/intelmeanrange.csv}; table[x=GT,y=GT,col sep=comma]{../data/intelmeanrange.csv};
\addlegendentry{Groundtruth} \addlegendentry{Groundtruth}
% Pixel 2 XL % Pixel 2 XL
\addplot [color=red, mark=x] % \addplot [color=red, mark=x] %
table[x=GT,y=N6Mean,col sep=comma]{plots/data/intelmeanrange.csv}; table[x=GT,y=N6Mean,col sep=comma]{../data/intelmeanrange.csv};
\addlegendentry{\intelOld} \addlegendentry{\intelOld}
% Pixel 3a % Pixel 3a
\addplot [color=blue, mark=x] % \addplot [color=blue, mark=x] %
table[x=GT,y=N7Mean,col sep=comma]{plots/data/intelmeanrange.csv}; table[x=GT,y=N7Mean,col sep=comma]{../data/intelmeanrange.csv};
\addlegendentry{\intelNew} \addlegendentry{\intelNew}
\end{axis} \end{axis}
\end{tikzpicture} \end{tikzpicture}
\end{document}

View File

@@ -1,5 +1,11 @@
\documentclass[tikz]{standalone}
\input{../PlotPreamble.tex}
\begin{document}
\small
\begin{tikzpicture} \begin{tikzpicture}
\begin{axis}[ \begin{axis}[
width=8cm,
height=8cm,
xlabel ={True distance in \si{\meter}}, xlabel ={True distance in \si{\meter}},
ylabel ={Mean distance in \si{\meter}}, ylabel ={Mean distance in \si{\meter}},
legend pos=north west, legend pos=north west,
@@ -15,15 +21,16 @@
] ]
% Groundtruth % Groundtruth
\addplot [color=black] % \addplot [color=black] %
table[x=GT,y=GT,col sep=comma]{plots/data/pixelmeanrange.csv}; table[x=GT,y=GT,col sep=comma]{../data/pixelmeanrange.csv};
\addlegendentry{Groundtruth} \addlegendentry{Groundtruth}
% Pixel 2 XL % Pixel 2 XL
\addplot [color=red, mark=x] % \addplot [color=red, mark=x] %
table[x=GT,y=P2Mean,col sep=comma]{plots/data/pixelmeanrange.csv}; table[x=GT,y=P2Mean,col sep=comma]{../data/pixelmeanrange.csv};
\addlegendentry{\pixelOld} \addlegendentry{\pixelOld}
% Pixel 3a % Pixel 3a
\addplot [color=blue, mark=x] % \addplot [color=blue, mark=x] %
table[x=GT,y=P3Mean,col sep=comma]{plots/data/pixelmeanrange.csv}; table[x=GT,y=P3Mean,col sep=comma]{../data/pixelmeanrange.csv};
\addlegendentry{\pixelNew} \addlegendentry{\pixelNew}
\end{axis} \end{axis}
\end{tikzpicture} \end{tikzpicture}
\end{document}

View File

@@ -0,0 +1,68 @@
\usepackage{pgfplots}
\usepackage{siunitx}
\usepackage{xspace}
\pgfplotsset{compat=newest}
\pgfplotsset{legend cell align=left}
\pgfplotsset{major grid style=solid}
\pgfplotsset{minor grid style=dashed}
\pgfplotsset{every axis plot/.append style={line width=1pt}}
\DeclareSIUnit{\belmilliwatt}{Bm}
\DeclareSIUnit{\dBm}{\deci\belmilliwatt}
\newcommand{\pixelOld}{Pixel~2~XL\xspace}
\newcommand{\pixelNew}{Pixel~3a\xspace}
\newcommand{\pixelBoth}{Pixel~2~XL and~3a\xspace}
\newcommand{\intelOld}{Intel~AC~8260\xspace}
\newcommand{\intelNew}{Intel~AC~9462\xspace}
\newcommand{\intelBoth}{Intel~AC~8260 and~9462\xspace}
% Tango colors
% butter (yellowish)
\definecolor{tabutter}{rgb}{0.98824, 0.91373, 0.30980} % #fce94f
\definecolor{ta2butter}{rgb}{0.92941, 0.83137, 0} % #edd400
\definecolor{ta3butter}{rgb}{0.76863, 0.62745, 0} % #c4a000
% orange
\definecolor{taorange}{rgb}{0.98824, 0.68627, 0.24314} % #fcaf3e
\definecolor{ta2orange}{rgb}{0.96078, 0.47451, 0} % #f57900
\definecolor{ta3orange}{rgb}{0.80784, 0.36078, 0} % #ce5c00
% chocolate (brownish)
\definecolor{tachocolate}{rgb}{0.91373, 0.72549, 0.43137} % #e9b96e
\definecolor{ta2chocolate}{rgb}{0.75686, 0.49020, 0.066667} % #c17d11
\definecolor{ta3chocolate}{rgb}{0.56078, 0.34902, 0.0078431} % #8f5902
% chameleon (greenish)
\definecolor{tachameleon}{rgb}{0.54118, 0.88627, 0.20392} % #8ae234
\definecolor{ta2chameleon}{rgb}{0.45098, 0.82353, 0.086275} % #73d216
\definecolor{ta3chameleon}{rgb}{0.30588, 0.60392, 0.023529} % #4e9a06
% sky blue
\definecolor{taskyblue}{rgb}{0.44706, 0.56078, 0.81176} % #728fcf
\definecolor{ta2skyblue}{rgb}{0.20392, 0.39608, 0.64314} % #3465a4
\definecolor{ta3skyblue}{rgb}{0.12549, 0.29020, 0.52941} % #204a87
% plum (violettish)
\definecolor{taplum}{rgb}{0.67843, 0.49804, 0.65882} % #ad7fa8
\definecolor{ta2plum}{rgb}{0.45882, 0.31373, 0.48235} % #75507b
\definecolor{ta3plum}{rgb}{0.36078, 0.20784, 0.4} % #5c3566
% scarlet red
\definecolor{tascarletred}{rgb}{0.93725, 0.16078, 0.16078} % #ef2929
\definecolor{ta2scarletred}{rgb}{0.8, 0, 0} % #cc0000
\definecolor{ta3scarletred}{rgb}{0.64314, 0, 0} % #a40000
% aluminium
\definecolor{taaluminium}{rgb}{0.93333, 0.93333, 0.92549} % #eeeeec
\definecolor{ta2aluminium}{rgb}{0.82745, 0.84314, 0.81176} % #d3d7cf
\definecolor{ta3aluminium}{rgb}{0.72941, 0.74118, 0.71373} % #babdb6
% gray
\definecolor{tagray}{rgb}{0.53333, 0.54118, 0.52157} % #888a85
\definecolor{ta2gray}{rgb}{0.33333, 0.34118, 0.32549} % #555753
\definecolor{ta3gray}{rgb}{0.18039, 0.20392, 0.21176} % #2e3436

15
tex/plots/_build.bat Normal file
View File

@@ -0,0 +1,15 @@
@echo off
SET TEX=pdflatex -shell-escape
cd out
start %TEX% ../BSTPlot1.pgf
start %TEX% ../BSTPlot1Rssi.pgf
start %TEX% ../BSTPlot2.pgf
start %TEX% ../DistErrorCdf.pgf
start %TEX% ../MeanDistIntel.pgf
start %TEX% ../MeanDistPixel.pgf
:eof
cd ..

1
tex/plots/out/.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
!*.pdf

BIN
tex/plots/out/BSTPlot1.pdf Normal file

Binary file not shown.

Binary file not shown.

BIN
tex/plots/out/BSTPlot2.pdf Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.