Moved eval into own cpp to allow shorter compile times
This commit is contained in:
@@ -38,6 +38,7 @@ FILE(GLOB HEADERS
|
||||
trilateration.h
|
||||
Plotta.h
|
||||
misc.h
|
||||
Eval.h
|
||||
)
|
||||
|
||||
|
||||
@@ -48,6 +49,7 @@ FILE(GLOB SOURCES
|
||||
mainFtm.cpp
|
||||
mainTrilat.cpp
|
||||
mainProb.cpp
|
||||
Eval.cpp
|
||||
)
|
||||
|
||||
|
||||
|
||||
70
code/Eval.cpp
Normal file
70
code/Eval.cpp
Normal file
@@ -0,0 +1,70 @@
|
||||
#include "Eval.h"
|
||||
|
||||
#include "Settings.h"
|
||||
|
||||
#include <Indoor/math/distribution/Normal.h>
|
||||
|
||||
double ftmEval(SensorMode UseSensor, const Timestamp& currentTime, const Point3& particlePos, const std::vector<WiFiMeasurement>& measurements, std::shared_ptr<std::unordered_map<MACAddress, Kalman>> ftmKalmanFilters)
|
||||
{
|
||||
double result = 1.0;
|
||||
|
||||
for (WiFiMeasurement wifi : measurements)
|
||||
{
|
||||
if (wifi.getNumSuccessfulMeasurements() < 3)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
const MACAddress& mac = wifi.getAP().getMAC();
|
||||
int nucIndex = Settings::nucIndex(mac);
|
||||
|
||||
const Point3 apPos = Settings::data.CurrentPath.nucInfo(nucIndex).position;
|
||||
// particlePos.z = 1.3; // smartphone h<>he
|
||||
const float apDist = particlePos.getDistance(apPos);
|
||||
|
||||
// compute ftm distance
|
||||
float ftm_offset = Settings::data.CurrentPath.NUCs.at(mac).ftm_offset;
|
||||
float ftmDist = wifi.getFtmDist() + ftm_offset; // in m; plus static offset
|
||||
|
||||
float rssi_pathloss = Settings::data.CurrentPath.NUCs.at(mac).rssi_pathloss;
|
||||
float rssiDist = LogDistanceModel::rssiToDistance(-40, rssi_pathloss, wifi.getRSSI());
|
||||
|
||||
if (UseSensor == SensorMode::FTM)
|
||||
{
|
||||
if (ftmDist > 0)
|
||||
{
|
||||
//double sigma = wifi.getFtmDistStd()*wifi.getFtmDistStd(); // 3.5; // TODO
|
||||
double sigma = 5;
|
||||
|
||||
if (ftmKalmanFilters != nullptr)
|
||||
{
|
||||
Kalman& kalman = ftmKalmanFilters->at(mac);
|
||||
ftmDist = kalman.predict(currentTime, ftmDist);
|
||||
//sigma = std::sqrt(kalman.P(0, 0));
|
||||
|
||||
Assert::isTrue(sigma > 0, "sigma");
|
||||
|
||||
double x = Distribution::Normal<double>::getProbability(ftmDist, sigma, apDist);
|
||||
|
||||
result *= x;
|
||||
}
|
||||
else
|
||||
{
|
||||
double x = Distribution::Normal<double>::getProbability(ftmDist, sigma, apDist);
|
||||
|
||||
result *= x;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// RSSI
|
||||
double sigma = 5;
|
||||
|
||||
double x = Distribution::Normal<double>::getProbability(rssiDist, sigma, apDist);
|
||||
result *= x;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
23
code/Eval.h
Normal file
23
code/Eval.h
Normal file
@@ -0,0 +1,23 @@
|
||||
#pragma once
|
||||
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
#include <Indoor/geo/Point3.h>
|
||||
|
||||
#include "FtmKalman.h"
|
||||
#include <Indoor/sensors/radio/WiFiMeasurements.h>
|
||||
#include <Indoor/sensors/radio/model/LogDistanceModel.h>
|
||||
|
||||
|
||||
enum class SensorMode
|
||||
{
|
||||
FTM,
|
||||
RSSI
|
||||
};
|
||||
|
||||
double ftmEval(SensorMode UseSensor,
|
||||
const Timestamp& currentTime,
|
||||
const Point3& particlePos,
|
||||
const std::vector<WiFiMeasurement>& measurements,
|
||||
std::shared_ptr<std::unordered_map<MACAddress, Kalman>> ftmKalmanFilters);
|
||||
@@ -34,6 +34,7 @@
|
||||
#include <Indoor/sensors/activity/ActivityDetector.h>
|
||||
|
||||
#include "FtmKalman.h"
|
||||
#include "Eval.h"
|
||||
|
||||
struct MyState {
|
||||
|
||||
@@ -274,67 +275,14 @@ struct MyPFEval : public SMC::ParticleFilterEvaluation<MyState, MyObservation> {
|
||||
for (int i = 0; i < particles.size(); ++i) {
|
||||
SMC::Particle<MyState>& p = particles[i];
|
||||
|
||||
double pFtm = 1.0;
|
||||
auto kalmanFilters = ftmKalmanFilters;
|
||||
|
||||
for (WiFiMeasurement wifi : observation.ftm)
|
||||
if (!Settings::UseKalman)
|
||||
{
|
||||
if (wifi.getNumSuccessfulMeasurements() < 3)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
const MACAddress& mac = wifi.getAP().getMAC();
|
||||
int nucIndex = Settings::nucIndex(mac);
|
||||
|
||||
const Point3 apPos = Settings::data.CurrentPath.nucInfo(nucIndex).position;
|
||||
Point3 particlePos = p.state.pos.pos;
|
||||
particlePos.z = 1.3; // smartphone höhe
|
||||
const float apDist = particlePos.getDistance(apPos);
|
||||
|
||||
// compute ftm distance
|
||||
float ftm_offset = Settings::data.CurrentPath.NUCs.at(mac).ftm_offset;
|
||||
float ftmDist = wifi.getFtmDist() + ftm_offset; // in m; plus static offset
|
||||
|
||||
float rssi_pathloss = Settings::data.CurrentPath.NUCs.at(mac).rssi_pathloss;
|
||||
float rssiDist = LogDistanceModel::rssiToDistance(-40, rssi_pathloss, wifi.getRSSI());
|
||||
|
||||
|
||||
if (ftmDist > 0)
|
||||
{
|
||||
double sigma = wifi.getFtmDistStd()*wifi.getFtmDistStd(); // 3.5; // TODO
|
||||
|
||||
if (sigma == 0)
|
||||
{
|
||||
sigma = 38*38;
|
||||
}
|
||||
|
||||
if (Settings::UseKalman)
|
||||
{
|
||||
Kalman& kalman = ftmKalmanFilters->at(mac);
|
||||
ftmDist = kalman.predict(observation.currentTime, ftmDist);
|
||||
sigma = kalman.P(0, 0);
|
||||
|
||||
//Assert::isTrue(sigma > 0, "sigma");
|
||||
if (sigma <= 0)
|
||||
{
|
||||
sigma = 38 * 38;
|
||||
}
|
||||
|
||||
double x = Distribution::Normal<double>::getProbability(ftmDist, std::sqrt(sigma), apDist);
|
||||
|
||||
pFtm *= x;
|
||||
}
|
||||
else
|
||||
{
|
||||
double x = Distribution::Normal<double>::getProbability(ftmDist, std::sqrt(sigma), apDist);
|
||||
|
||||
pFtm *= x;
|
||||
}
|
||||
}
|
||||
kalmanFilters = nullptr;
|
||||
}
|
||||
|
||||
|
||||
double prob = pFtm;
|
||||
double prob = ftmEval(SensorMode::FTM, observation.currentTime, p.state.pos.pos, observation.ftm, kalmanFilters);
|
||||
|
||||
if (assignProps)
|
||||
p.weight = prob;
|
||||
|
||||
Reference in New Issue
Block a user